1
|
Hagenbuch B, Stieger B, Locher KP. Organic anion transporting polypeptides: Pharmacology, toxicology, structure, and transport mechanisms. Pharmacol Rev 2025; 77:100023. [PMID: 40148036 DOI: 10.1016/j.pharmr.2024.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs) are membrane proteins that mediate the uptake of a wide range of substrates across the plasma membrane of various cells and tissues. They are classified into 6 subfamilies, OATP1 through OATP6. Humans contain 12 OATPs encoded by 11 solute carrier of organic anion transporting polypeptide (SLCO) genes: OATP1A2, OATP1B1, OATP1B3, the splice variant OATP1B3-1B7, OATP1C1, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1. Most of these proteins are expressed in epithelial cells, where they mediate the uptake of structurally unrelated organic anions, cations, and even neutral compounds into the cytoplasm. The best-characterized members are OATP1B1 and OATP1B3, which have an important role in drug metabolism by mediating drug uptake into the liver and are involved in drug-drug interactions. In this review, we aimed to (1) provide a historical perspective on the identification of OATPs and their nomenclature and discuss their phylogenic relationships and molecular characteristics; (2) review the current knowledge of the broad substrate specificity and their role in drug disposition and drug-drug interactions, with a special emphasis on human hepatic OATPs; (3) summarize the different experimental systems that are used to study the function of OATPs and discuss their advantages and disadvantages; (4) review the available experimental 3-dimensional structures and examine how they can help elucidate the transport mechanisms of OATPs; and (5) finally, summarize the current knowledge of the regulation of OATP expression, discuss clinically important single-nucleotide polymorphisms, and outline challenges of physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (OATPs) are a family of 12 uptake transporters in the solute carrier superfamily. Several members, particularly the liver-expressed OATP1B1 and OATP1B3, are important drug transporters. They mediate the uptake of several endobiotics and xenobiotics, including statins and numerous other drugs, into hepatocytes, and their inhibition by other drugs or reduced expression due to single-nucleotide polymorphisms can lead to adverse drug effects. Their recently solved 3-dimensional structures should help to elucidate their transport mechanisms and broad substrate specificities.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Karlsson M, Simonsson C, Dahlström N, Cedersund G, Lundberg P. Mathematical models for biomarker calculation of drug-induced liver injury in humans and experimental models based on gadoxetate enhanced magnetic resonance imaging. PLoS One 2023; 18:e0279168. [PMID: 36608050 PMCID: PMC9821424 DOI: 10.1371/journal.pone.0279168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Drug induced liver injury (DILI) is a major concern when developing new drugs. A promising biomarker for DILI is the hepatic uptake rate of the contrast agent gadoxetate. This rate can be estimated using a novel approach combining magnetic resonance imaging and mathematical modeling. However, previous work has used different mathematical models to describe liver function in humans or rats, and no comparative study has assessed which model is most optimal to use, or focused on possible translatability between the two species. AIMS Our aim was therefore to do a comparison and assessment of models for DILI biomarker assessment, and to develop a conceptual basis for a translational framework between the species. METHODS AND RESULTS We first established which of the available pharmacokinetic models to use by identifying the most simple and identifiable model that can describe data from both human and rats. We then developed an extension of this model for how to estimate the effects of a hepatotoxic drug in rats. Finally, we illustrated how such a framework could be useful for drug dosage selection, and how it potentially can be applied in personalized treatments designed to avoid DILI. CONCLUSION Our analysis provides clear guidelines of which mathematical model to use for model-based assessment of biomarkers for liver function, and it also suggests a hypothetical path to a translational framework for DILI.
Collapse
Affiliation(s)
- Markus Karlsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
3
|
Fliszár-Nyúl E, Ungvári O, Dombi Á, Özvegy-Laczka C, Poór M. Interactions of Mycotoxin Alternariol with Cytochrome P450 Enzymes and OATP Transporters. Metabolites 2022; 13:metabo13010045. [PMID: 36676970 PMCID: PMC9862037 DOI: 10.3390/metabo13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alternariol (AOH) is an emerging mycotoxin produced by Alternaria strains. The acute toxicity of the mycotoxin is low; however, chronic exposure to AOH may result in the development of endocrine disruptor and/or carcinogenic effects. The toxicokinetic properties of AOH have barely been characterized. Therefore, in this study, we aimed to investigate its interactions with CYP (1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and OATP (1A2, 1B1, 1B3, and 2B1) transporters employing in vitro enzyme assays and OATP overexpressing cells, respectively. Our results demonstrated that AOH is a strong inhibitor of CYP1A2 (IC50 = 0.15 μM) and CYP2C9 (IC50 = 7.4 μM). Based on the AOH depletion assays in the presence of CYP enzymes, CYP1A2 is mainly involved, while CYP2C19 is moderately involved in the CYP-catalyzed biotransformation of the mycotoxin. AOH proved to be a strong inhibitor of each OATP transporter examined (IC50 = 1.9 to 5.4 μM). In addition, both direct and indirect assays suggest the involvement of OATP1B1 in the cellular uptake of the mycotoxin. These findings promote the deeper understanding of certain toxicokinetic interactions of AOH.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Orsolya Ungvári
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
4
|
Li B, Li J, Zhang Y, Chu Z, Zhang L, Ji Q. Dynamic changes of hepatic microenvironment related to graft function in donation after cardiac death liver transplantation. Eur J Radiol 2022; 154:110424. [DOI: 10.1016/j.ejrad.2022.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
|
5
|
Leuenberger M, Häusler S, Höhn V, Euler A, Stieger B, Lochner M. Characterization of Novel Fluorescent Bile Salt Derivatives for Studying Human Bile Salt and Organic Anion Transporters. J Pharmacol Exp Ther 2021; 377:346-357. [PMID: 33782042 DOI: 10.1124/jpet.120.000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Abstract
Bile salts, such as cholate, glycocholate, taurocholate, and glycochenodeoxycholate, are taken up from the portal blood into hepatocytes via transporters, such as the Na+-taurocholate-cotransporting polypeptide (NTCP) and organic anion-transporting polypeptides (OATPs). These bile salts are later secreted into bile across the canalicular membrane, which is facilitated by the bile salt export pump (BSEP). Apart from bile salt transport, some of these proteins (e.g., OATPs) are also key transporters for drug uptake into hepatocytes. In vivo studies of transporter function in patients by using tracer compounds have emerged as an important diagnostic tool to complement classic liver parameter measurements by determining dynamic liver function both for diagnosis and monitoring progression or improvement of liver diseases. Such approaches include use of radioactively labeled bile salts (e.g., for positron emission tomography) and fluorescent bile salt derivatives or dyes (e.g., indocyanine green). To expand the list of liver function markers, we synthesized fluorescent derivatives of cholic and chenodeoxycholic acid by conjugating small organic dyes to the bile acid side chain. These novel fluorescent probes were able to block substrate transport in a concentration-dependent manner of NTCP, OATP1B1, OATP1B3, OATP2B1, BSEP, and intestinal apical sodium-dependent bile salt transporter (ASBT). Whereas the fluorescent bile acid derivatives themselves were transported across the membrane by OATP1B1, OATP1B3, and OATP2B1, they were not transport substrates for NTCP, ASBT, BSEP, and multidrug resistance-related protein 2. Accordingly, these novel fluorescent bile acid probes can potentially be used as imaging agents to monitor the function of OATPs. SIGNIFICANCE STATEMENT: Synthetic modification of common bile acids by attachment of small organic fluorescent dyes to the bile acid side chain resulted in bright, fluorescent probes that interact with hepatic and intestinal organic anion [organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1], bile salt uptake (Na+-taurocholate-cotransporting polypeptide, apical sodium-dependent bile salt transporter), and bile salt efflux (bile salt export pump, multidrug resistance-related protein 2) transporters. Although the fluorescent bile salt derivatives are taken up into cells via the OATPs, the efflux transporters do not transport any of them but one.
Collapse
Affiliation(s)
- Michele Leuenberger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Stephanie Häusler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Vera Höhn
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Adriana Euler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Bruno Stieger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| |
Collapse
|
6
|
Shorikov MA, Sergeeva ON, Kashkadaeva AV, Averinova SG, Lapteva MG, Frantsev DY, Polyakov AN, Kudashkin NE, Alekhin AP, Moroz EA, Virshke ER, Dolgushin BI. Liver Functional Evaluation Using Gadoxetic Acid Versus the Gold Standard Hepatobiliary Scintigraphy in Patients with Bile Duct Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.20862/0042-4676-2019-100-4-200-208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective. To compare liver function assessments using Gd-EOB-DTPA-enhanced MRI and the gold standard hepatobiliary scintigraphy (HBS) in patients with bile duct diseases.Material and methods. The investigation enrolled 18 patients (male/female = 11/7; age, 29–70 years, Klatskin tumor (n=16), bile duct epithelial dysplasia (n=1), intrahepatic cholangiolithiasis (n=1)) after biliary decompression, who underwent 21 paired MRIs and 99mTc-mebrofenin HBS at a study interval of no more than 3 days. In the same regions of interest with a size of 30–50 pixels located in liver segments II–III, IV, V–VIII, and VI–VII, a MRI signal was measured before MR contrast agent (MRCA) injection into the standard vascular phases and at 10, 20, 30 and 40 minutes, then the signal was expressed as a percentage of intensity compared to the precontrast series. After MR volumetry, the functional volumes of the left and right liver lobes were also defined as the area under the MRCA accumulation curve, which was multiplied by the lobe volume and expressed as a percentage of the similarly calculated function of the entire liver. Similar intensity parameters and functional volumes were estimated for a HBS study.Results. The lobe functional volumes measured by the two methods were highly correlated (R=0.8; p<0.001) and did not show a significant difference at all when comparing with the Mann–Whitney test (p>0.3). The excretion rate of 99mTc-mebrofenin was also highly correlated with MRI findings (R=0.5–0.9; p<0.05). Conclusion. Gd-EOB-DTPA-enhanced MRI revealed a high correlation with the gold standard; however, additional studies are needed to clarify the possibilities and limitations of replacing one method with another one.><0.05).Conclusion. Gd-EOB-DTPA-enhanced MRI revealed a high correlation with the gold standard; however, additional studies are needed to clarify the possibilities and limitations of replacing one method with another one.
Collapse
Affiliation(s)
- M. A. Shorikov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - O. N. Sergeeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - A. V. Kashkadaeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - S. G. Averinova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - M. G. Lapteva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - D. Yu. Frantsev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - A. N. Polyakov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - N. E. Kudashkin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - A. P. Alekhin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - E. A. Moroz
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - E. R. Virshke
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| | - B. I. Dolgushin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
| |
Collapse
|
7
|
Forsgren MF, Karlsson M, Dahlqvist Leinhard O, Dahlström N, Norén B, Romu T, Ignatova S, Ekstedt M, Kechagias S, Lundberg P, Cedersund G. Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort. PLoS Comput Biol 2019; 15:e1007157. [PMID: 31237870 PMCID: PMC6613709 DOI: 10.1371/journal.pcbi.1007157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/08/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Being able to accurately and reliably estimate liver function is important when monitoring the progression of patients with liver disease, as well as when identifying drug-induced liver injury during drug development. A promising method for quantifying liver function is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-specific contrast agent, which is taken up by the hepatocytes and excreted into the bile. We have previously developed a mechanistic model for gadoxetate dynamics using averaged data from healthy volunteers. In this work, we extended our model with a non-linear mixed-effects modeling framework to give patient-specific estimates of the gadoxetate transport-rates. We validated the model by recruiting 100 patients with liver disease, covering a range of severity and etiologies. All patients underwent an MRI-examination and provided both blood and liver biopsies. Our validated model provides a new and deeper look into how the mechanisms of liver function varies across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate.
Collapse
Affiliation(s)
- Mikael F. Forsgren
- Wolfram MathCore AB and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Markus Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thobias Romu
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| |
Collapse
|
8
|
Stress test of liver function using technetium-99m-mebrofenin hepatobiliary scintigraphy. Nucl Med Commun 2019; 40:388-392. [PMID: 30676547 DOI: 10.1097/mnm.0000000000000979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Technetium-99m (Tc) mebrofenin hepatobiliary scintigraphy (HBS) enables a quantitative assessment of liver function. This is normally performed in a fasting state and might therefore reflect the resting liver function. We evaluated the change in liver function using HBS after stimulation with an oral metabolic challenge. Healthy volunteers aged 50-60 (n=12) or older than or equal to 75 (n=12) years underwent two sequential HBS. The first scan was performed after an overnight fast and the second scan was performed after the administration of chocolate milk. Hepatic Tc-mebrofenin uptake rate (cMUR) was calculated and the difference was expressed as percentage. cMUR after fasting was 10.9±2.5%/min/m (mean±SD) and increased by 20% to 13.0±3.1%/min/m after stimulation with chocolate milk (P<0.001). cMUR increased markedly after the administration of an oral metabolic challenge in comparison with fasting. This may be a consequence of hepatocyte stimulation, reflecting the hepatic functional reserve capacity.
Collapse
|
9
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements. Molecules 2017; 22:molecules22101699. [PMID: 29065448 PMCID: PMC6151444 DOI: 10.3390/molecules22101699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.
Collapse
|
11
|
Model Systems for Studying the Role of Canalicular Efflux Transporters in Drug-Induced Cholestatic Liver Disease. J Pharm Sci 2017; 106:2295-2301. [PMID: 28385542 DOI: 10.1016/j.xphs.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Bile formation is a key function of the liver. Disturbance of bile flow may lead to liver disease and is called cholestasis. Cholestasis may be inherited, for example, in progressive familial intrahepatic cholestasis or acquired, for example, by drug-mediated inhibition of bile salt export from hepatocytes into the canaliculi. The key transport system for exporting bile salts into the canaliculi is the bile salt export pump. Inhibition of the bile salt export pump by drugs is a well-established cause of drug-induced cholestasis. Investigation of the role of the multidrug resistance protein 3, essential for biliary phospholipid secretion, is emerging now. This overview summarizes current concepts and methods with an emphasis on in vitro model systems for the investigation of drug-induced cholestasis in the general context of drug-induced liver injury.
Collapse
|
12
|
Olthof PB, van Golen RF, Meijer B, van Beek AA, Bennink RJ, Verheij J, van Gulik TM, Heger M. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2016; 1863:375-385. [PMID: 27989959 DOI: 10.1016/j.bbadis.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is characterized by hepatocellular damage, sterile inflammation, and compromised postoperative liver function. Generally used mouse I/R models are too severe and poorly reflect the clinical injury profile. The aim was to establish a mouse I/R model with better translatability using hepatocellular injury, liver function, and innate immune parameters as endpoints. METHODS Mice (C57Bl/6J) were subjected to sham surgery, 30min, or 60min of partial hepatic ischemia. Liver function was measured after 24h using intravital microscopy and spectroscopy. Innate immune activity was assessed at 6 and 24h of reperfusion using mRNA and cytokine arrays. Liver inflammation and function were profiled in two patient cohorts subjected to I/R during liver resection to validate the preclinical results. RESULTS In mice, plasma ALT levels and the degree of hepatic necrosis were strongly correlated. Liver function was bound by a narrow damage threshold and was severely impaired following 60min of ischemia. Severe ischemia (60min) evoked a neutrophil-dominant immune response, whereas mild ischemia (30min) triggered a monocyte-driven response. Clinical liver I/R did not compromise liver function and displayed a cytokine profile similar to the mild I/R injury model. CONCLUSIONS Mouse models using ≤30min of ischemia best reflect the clinical liver I/R injury profile in terms of liver function dynamics and type of immune response. GENERAL SIGNIFICANCE This short duration of ischemia therefore has most translational value and should be used to increase the prospects of developing effective interventions for hepatic I/R.
Collapse
Affiliation(s)
- Pim B Olthof
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Roelof J Bennink
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
14
|
Stieger B, Mahdi ZM, Jäger W. Intestinal and Hepatocellular Transporters: Therapeutic Effects and Drug Interactions of Herbal Supplements. Annu Rev Pharmacol Toxicol 2016; 57:399-416. [PMID: 27648763 DOI: 10.1146/annurev-pharmtox-010716-105010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herbal supplements are generally considered safe; however, drug disposition is influenced by the interactions of herbal supplements and food constituents with transport and metabolic processes. Although the interference of herbal supplements with drug metabolism has been studied extensively, knowledge of how they interact with the drug transport processes is less advanced. Therefore, we describe here specific examples of experimental and human interaction studies of herbal supplement components with drug transporters addressing, for example, organic anion transporting polypeptides or P-glycoprotein, as such interactions may lead to severe side effects and altered drug efficacy. Hence, it is clearly necessary to increase the awareness of the clinical relevance of the interference of herbal supplements with the drug transport processes.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Zainab M Mahdi
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Walter Jäger
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
15
|
Giraudeau C, Leporq B, Doblas S, Lagadec M, Pastor CM, Daire JL, Van Beers BE. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis. Eur Radiol 2016; 27:1804-1811. [PMID: 27553933 DOI: 10.1007/s00330-016-4536-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. METHODS Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. RESULTS In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). CONCLUSION These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. KEY POINTS • Expression of hepatocyte transporters is modified in rats with advanced liver fibrosis. • Kinetic parameters at gadoxetate-enhanced MRI are correlated with hepatocyte transporter expression. • Hepatocyte transport function can be assessed with compartmental analysis of gadoxetate-enhanced MRI. • Compartmental analysis of gadoxetate-enhanced MRI might provide biomarkers in advanced liver fibrosis.
Collapse
Affiliation(s)
- Céline Giraudeau
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.
| | - Benjamin Leporq
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France
| | - Matthieu Lagadec
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Catherine M Pastor
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Département d'imagerie et des sciences de l'information médicale, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Jean-Luc Daire
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| |
Collapse
|
16
|
Dietrich CG, Götze O, Geier A. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance. World J Gastroenterol 2016; 22:72-88. [PMID: 26755861 PMCID: PMC4698509 DOI: 10.3748/wjg.v22.i1.72] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests.
Collapse
|
17
|
Visentin M, Stieger B, Merz M, Kullak-Ublick GA. Octreotide inhibits the bilirubin carriers organic anion transporting polypeptides 1B1 and 1B3 and the multidrug resistance-associated protein 2. J Pharmacol Exp Ther 2015; 355:145-51. [PMID: 26330539 DOI: 10.1124/jpet.115.227546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 08/30/2023] Open
Abstract
The somatostatin analog octreotide can lead to hyperbilirubinemia without evidence of liver injury. Here we investigate whether octreotide inhibits the main sinusoidal/canalicular bilirubin carriers and whether it is a transport substrate. Octreotide showed the most potent inhibitory effect toward OATP1B1-mediated transport and weaker inhibition for OATP1B3- and MRP2-mediated transport. Octreotide had no effect on OATP2B1-mediated transport. Octreotide inhibited [(3)H]estradiol-17-β-glucuronide (E17βG) influx mediated by OATP1B1, 1B3, and multidrug resistance-associated protein 2 (MRP2) in a concentration-dependent manner, and the IC50 values were computed to be 23 μM (95% confidence interval [CI] 18-29), 68 μM (95% CI 50-91), and 116.6 μM (95% CI 74.5-182.4), respectively. The interaction between octreotide and OATP1B1 was further studied. Inhibition of [(3)H]E17βG OATP1B1-mediated transport was purely competitive with no changes in maximum transport capacity (Vmax) and a twofold Km increase when the influx kinetics of [(3)H]E17βG were measured in the presence of octreotide (8.8 ± 3.1 versus 4.4 ± 1.2 μM, P = 0.03). The inhibition constant (Ki) of octreotide for the transport of [(3)H]E17βG was calculated at 33.5 ± 5.5 μM. Uptake of radiolabeled octreotide by OATP1B1-CHO cells was higher than in wild-type CHO cells and nonlabeled octreotide at the extracellular compartment was able to trans-stimulate the OATP1B1-mediated efflux of intracellular [(3)H]E17βG, suggesting that octreotide is a substrate of OATP1B1. In summary, this study shows interaction of octreotide on the human hepatocellular bilirubin transporters OATP1B1, OATP1B3, and MRP2, notably OATP1B1. These findings are in line with the clinical observation that a fraction of patients under treatment with octreotide exhibit hyperbilirubinemia.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Michael Merz
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| |
Collapse
|
18
|
Shimada S, Ohtsubo S, Ogasawara K, Kusano M. Macro- and microscopic findings of ICG fluorescence in liver tumors. World J Surg Oncol 2015; 13:198. [PMID: 26055754 PMCID: PMC4461923 DOI: 10.1186/s12957-015-0615-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background Reports detailing microscopic observations of indocyanine green (ICG) fluorescence imaging (IFI) in hepatocellular carcinoma (HCC) and metastatic liver cancer are rare. We were able to perform macro- and microscopic IFI results in postoperative paraffin-embedded tissue samples and formalin-fixed specimens from liver tumors. Methods Between April 2010 and March 2014, 19 patients with HCC or liver metastases of colorectal tumors underwent liver resection. ICG solution was injected into the peripheral vein from 14 to 2 days prior to operation. We observed liver tumor IFI during the laparotomy and IFI in resected liver sections using a photo dynamic emission (PDE) camera. The IFI of paraffin-embedded tissue samples was observed using a charge-coupled device (CCD) camera. Moreover, we microscopically performed tissue section IFI using a fluorescence microscope with an ICG-B-NQF. Results We performed that IFI characteristics depended on tumor type macroscopically and microscopically. In normal liver tissue, fluorescence consistent with the bile canaliculus was observed. HCC had heterogeneous IFI, forming a total or partial tumor and rim pattern. In metastatic carcinoma, we performed that non-tumor cells in the marginal region showed fluorescence and tumor cells in the central region did not fluoresce. Conclusions We confirmed that the variations of ICG fluorescence imaging patterns reflect different tumor characteristics in not only macroscopic imaging as previous reports but also microscopic imaging. Moreover, the ICG fluorescence method is useful for postoperative pathological detection of microscopic lesions in histopathological specimens. ICG fluorescence in paraffin-embedded tissue samples and formalin-fixed specimens is preserved in the long term.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Surgery, Japan Labor Health and Welfare Organization, Kushiro Rosai Hospital, 13-12, Nakazono-cho, Kushiro, Hokkaido, 085-8533, Japan.
| | - Seiji Ohtsubo
- Department of Oral and Maxillofacial Surgery, Japan Labor Health and Welfare Organization, Kushiro Rosai Hospital, 13-12, Nakazono-cho, Kushiro, Hokkaido, 085-8533, Japan.
| | - Kazuhiro Ogasawara
- Department of Surgery, Japan Labor Health and Welfare Organization, Kushiro Rosai Hospital, 13-12, Nakazono-cho, Kushiro, Hokkaido, 085-8533, Japan.
| | - Mitsuo Kusano
- Department of Surgery, Seiwa Memorial Hospital, 1-5-1-1, Kotoni, Nishi-ku, Sapporo, Hokkaido, 063-0811, Japan.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW It is our opinion that there is an unmet need in hepatology for a minimally or noninvasive test of liver function and physiology. Quantitative liver function tests define the severity and prognosis of liver disease by measuring the clearance of substrates whose uptake or metabolism is dependent upon liver perfusion or hepatocyte function. Substrates with high-affinity hepatic transporters exhibit high 'first-pass' hepatic extraction and their clearance measures hepatic perfusion. In contrast, substrates metabolized by the liver have low first-pass extraction and their clearance measures specific drug metabolizing pathways. RECENT FINDINGS We highlight one quantitative liver function test, the dual cholate test, and introduce the concept of a disease severity index linked to clinical outcome that quantifies the simultaneous processes of hepatocyte uptake, clearance from the systemic circulation, clearance from the portal circulation, and portal-systemic shunting. SUMMARY It is our opinion that dual cholate is a relevant test for defining disease severity, monitoring the natural course of disease progression, and quantifying the response to therapy.
Collapse
|
20
|
Kim H, Park SH, Kim EK, Kim MJ, Park YN, Park HJ, Choi JY. Histogram analysis of gadoxetic acid-enhanced MRI for quantitative hepatic fibrosis measurement. PLoS One 2014; 9:e114224. [PMID: 25460180 PMCID: PMC4252123 DOI: 10.1371/journal.pone.0114224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The diagnosis and monitoring of liver fibrosis is an important clinical issue; however, this is usually achieved by invasive methods such as biopsy. We aimed to determine whether histogram analysis of hepatobiliary phase images of gadoxetic acid-enhanced magnetic resonance imaging (MRI) can provide non-invasive quantitative measurement of liver fibrosis. METHODS This retrospective study was approved by the institutional ethics committee, and a waiver of informed consent was obtained. Hepatobiliary phase images of preoperative gadoxetic acid-enhanced MRI studies of 105 patients (69 males, 36 females; age 56.1±12.2) with pathologically documented liver fibrosis grades were analyzed. Fibrosis staging was F0/F1/F2/F3/F4 (METAVIR system) for 11/20/13/15/46 patients, respectively. Four regions-of-interest (ROI, each about 2 cm2) were placed on predetermined locations of representative images. The measured signal intensity of pixels in each ROI was used to calculate corrected coefficient of variation (cCV), skewness, and kurtosis. An average value of each parameter was calculated for comparison. Statistical analysis was performed by ANOVA, receiver operating characteristic (ROC) curve analysis, and linear regression. RESULTS The cCV showed statistically significant differences among pathological fibrosis grades (P<0.001) whereas skewness and kurtosis did not. Univariable linear regression analysis suggested cCV to be a meaningful parameter in predicting the fibrosis grade (P<0.001, β = 0.40 and standard error = 0.06). For discriminating F0-3 from F4, the area under ROC score was 0.857, standard deviation 0.036, 95% confidence interval 0.785-0.928. CONCLUSION Histogram analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI can provide non-invasive quantitative measurements of hepatic fibrosis.
Collapse
Affiliation(s)
- Honsoul Kim
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeong-Jin Kim
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Stieger B, Unadkat JD, Prasad B, Langer O, Gali H. Role of (drug) transporters in imaging in health and disease. Drug Metab Dispos 2014; 42:2007-15. [PMID: 25249691 PMCID: PMC5611776 DOI: 10.1124/dmd.114.059873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
This report is the summary of presentations at the symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics, April 26-30, at Experimental Biology 2014 in San Diego, CA. The presentations focused on the role of transporters in imaging in health and disease and on assessing transporter function in vivo. Imaging is an important diagnostic tool in clinics and is a novel tool for in vivo visualization of transporter function. Many imaging substrates and endogenous markers for organ function are organic anions. In this symposium, the bile salt transporter sodium taurocholate cotransporting polypeptide and the liver organic anion transporting polypeptides (OATPs) as well as the renal organic anion transporters (OATs) were addressed in detail; e.g., OATPs mediate transport of contrast agents used for magnetic resonance imaging of the liver or transport agents used for hepatobiliary scintigraphy, and OATs transport substances used in renography. In addition, the symposium also focused on the multidrug-resistance transporter 1 (MDR1 or P-gp), which is the most important gatekeeper in epithelial or endothelial barriers for preventing entry of potentially harmful substances into organs. Novel substrates suitable for positron emission tomography (PET) allow the study of such transporters at the blood-brain barrier or while they are mediating uptake of drugs into hepatocytes, and, importantly, PET tracers also now allow renography. Finally, quantitative data on transporter expression in human organs allow the development of improved physiologically based pharmacokinetic (PBPK) models for drug disposition. Hence, the combined efforts using novel substrates for in vivo visualization of transporters and quantification of transporters will lead to a deeper understanding of transporter function in disease and allow development of novel PBPK models for disease states.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Jashvant D Unadkat
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Bhagwat Prasad
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Oliver Langer
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Hariprasad Gali
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| |
Collapse
|
22
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Pastor CM, Müllhaupt B, Stieger B. The role of organic anion transporters in diagnosing liver diseases by magnetic resonance imaging. Drug Metab Dispos 2014; 42:675-84. [PMID: 24398460 DOI: 10.1124/dmd.113.055707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The expression and transport functions of organic anion transporters are modified in liver diseases, and therefore the vascular clearances of endogenous and exogenous organic anions that are taken up by these transporters have been used to assess liver diseases in patients. More recently, liver imaging with hepatobiliary contrast agents, tracers, and dyes that cross hepatocytes through the organic anion transporting polypeptides (OATPs)-multidrug resistance-associated proteins (MRPs) pathway were developed to detect and characterize focal lesions and to assess the severity of diffuse liver diseases. This review focuses mainly on magnetic resonance imaging and highlights the growing interest in imaging the OATPs-MRP2 pathway to better understand liver diseases. Imaging provides noninvasive measurements of tissue concentrations that result from the interplay between influx and efflux membrane transport systems in normal or injured hepatocytes. Imaging with magnetic resonance hepatobiliary contrast agents improves the detection and the characterization of hepatic focal lesions. New developments of imaging to assess liver function and understand the hepatocellular concentrations of contrast agents are discussed.
Collapse
Affiliation(s)
- Catherine M Pastor
- Laboratoire de Physiopathologie Hépatique et Imagerie Moléculaire, Hôpitaux Universitaires de Genève, Switzerland, and U1149 INSERM-Université Paris Diderot, Sorbonne Paris Cité, Paris, France (C.M.P.); Swiss HPB and Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland (B.M.); and Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.)
| | | | | |
Collapse
|
24
|
Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2013. [PMID: 24196564 DOI: 10.1007/s00424‐013‐1367‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA,
| | | |
Collapse
|
25
|
Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch 2013; 466:77-89. [PMID: 24196564 DOI: 10.1007/s00424-013-1367-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
|
26
|
Ogawa S, Surapisitchat J, Virtanen C, Ogawa M, Niapour M, Sugamori KS, Wang S, Tamblyn L, Guillemette C, Hoffmann E, Zhao B, Strom S, Laposa RR, Tyndale RF, Grant DM, Keller G. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development 2013; 140:3285-96. [PMID: 23861064 DOI: 10.1242/dev.090266] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human pluripotent stem cells (hPSCs) represent a novel source of hepatocytes for drug metabolism studies and cell-based therapy for the treatment of liver diseases. These applications are, however, dependent on the ability to generate mature metabolically functional cells from the hPSCs. Reproducible and efficient generation of such cells has been challenging to date, owing to the fact that the regulatory pathways that control hepatocyte maturation are poorly understood. Here, we show that the combination of three-dimensional cell aggregation and cAMP signaling enhance the maturation of hPSC-derived hepatoblasts to a hepatocyte-like population that displays expression profiles and metabolic enzyme levels comparable to those of primary human hepatocytes. Importantly, we also demonstrate that generation of the hepatoblast population capable of responding to cAMP is dependent on appropriate activin/nodal signaling in the definitive endoderm at early stages of differentiation. Together, these findings provide new insights into the pathways that regulate maturation of hPSC-derived hepatocytes and in doing so provide a simple and reproducible approach for generating metabolically functional cell populations.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- McEwen Centre For Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hagenbuch B, Stieger B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 2013; 34:396-412. [PMID: 23506880 DOI: 10.1016/j.mam.2012.10.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023]
Abstract
The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1-OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
28
|
Schmidt S, Denys A, Pastor CM. Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J Hepatol 2013; 59:631-2. [PMID: 23665042 DOI: 10.1016/j.jhep.2013.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
|
29
|
Wlcek K, Koller F, Ferenci P, Stieger B. Hepatocellular organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2 (MRP2) are inhibited by silibinin. Drug Metab Dispos 2013; 41:1522-1528. [PMID: 23695864 DOI: 10.1124/dmd.113.051037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Silibinin has been reported to be a promising compound for hepatitis C treatment of nonresponders to standard treatment. Although administered silibinin is well tolerated, increased serum bilirubin levels have been observed during high-dose i.v. silibinin therapy. The mechanism of silibinin-induced hyperbilirubinemia in humans, however, has not been identified so far. The aim of this study was to investigate the effect of silibinin on hepatocellular uptake and efflux transport systems for organic anions to elucidate the cause of silibinin-induced hyperbilirubinemia. Therefore, the effect of silibinin on transport activity of the hepatocellular uptake transporters organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, and OATP2B1, as well as Na(+)-taurocholate cotransporting polypeptide (NTCP) and of the efflux transporters multidrug resistance-associated protein 2 (MRP2) and bile-salt export pump (BSEP) was studied. The effect of silibinin on OATPs and NTCP function was studied in stable transfected Chinese hamster ovary cells using the radiolabeled model substrates estrone-3-sulfate and dehydroepiandrosteronesulfate for OATPs and taurocholate for NTCP. Interaction of silibinin with MRP2 and BSEP was measured in vesicles isolated from Sf21 or Sf9 insect cells expressing these transporters using either estradiol-17β-glucuronide or taurocholate as substrates. OATP1B1, OATP1B3, and OATP2B1 were inhibited by silibinin, with OATP1B1 being inhibited by (a) complex mechanism(s). An inhibitory effect was also seen for MRP2. In contrast, the bile acid transporters NTCP and BSEP were not affected by silibinin. We concluded that silibinin-induced hyperbilirubinemia may be caused by an inhibition of the bilirubin-transporting OATPs and the efflux-transporter MRP2.
Collapse
Affiliation(s)
- Katrin Wlcek
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
31
|
Abstract
Gadolinium ethoxybenzyl dimeglumine (Gd-EOB-DTPA, Primovist in Europe and Eovist in the USA) is a liver-specific magnetic resonance imaging contrast agent that has up to 50% hepatobiliary excretion in the normal liver. After intravenous injection, Gd-EOB-DTPA distributes into the vascular and extravascular spaces during the arterial, portal venous and late dynamic phases, and progressively into the hepatocytes and bile ducts during the hepatobiliary phase. The hepatocyte uptake of Gd-EOB-DTPA mainly occurs via the organic anion transporter polypeptides OATP1B1 and B3 located at the sinusoidal membrane and biliary excretion via the multidrug resistance-associated proteins MRP2 at the canalicular membrane. Because of these characteristics, Gd-EOB-DTPA behaves similarly to non-specific gadolinium chelates during the dynamic phases, and adds substantial information during the hepatobiliary phase, improving the detection and characterization of focal liver lesions and diffuse liver disease. This information is particularly relevant for the detection of metastases, and for the detection and characterization of nodular lesions in liver cirrhosis, including early hepatocellular carcinomas. Finally, GD-EOB-DTPA-enhanced magnetic resonance imaging may provide quantitative assessment regarding liver perfusion and hepatocyte function in diffuse liver diseases. The full potential of GD-EOB-DTPA-enhanced magnetic resonance imaging has to be established further. It is already clear that GD-EOB-DTPA-enhanced magnetic resonance imaging provides anatomic and functional information in the setting of focal and diffuse liver disease that is unattainable with magnetic resonance imaging enhanced with non-specific contrast agents.
Collapse
|