1
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Knight A, Hemmings JL, Winfield I, Leuenberger M, Frattini E, Frenguelli BG, Dowell SJ, Lochner M, Ladds G. Discovery of Novel Adenosine Receptor Agonists That Exhibit Subtype Selectivity. J Med Chem 2016; 59:947-64. [DOI: 10.1021/acs.jmedchem.5b01402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anthony Knight
- Systems
Biology Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, U.K
| | - Jennifer L. Hemmings
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Ian Winfield
- Division
of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Michele Leuenberger
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Eugenia Frattini
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | | | - Simon J. Dowell
- Department
of Platform Technology and Science, GlaxoSmithKline, Hertfordshire SG1 2NY, U.K
| | - Martin Lochner
- Department
of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
5
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
6
|
Abstract
Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|