1
|
Alluri SR, Higashi Y, Berendzen A, Grisanti LA, Watkinson LD, Singh K, Hoffman TJ, Carmack T, Devanny EA, Tanner M, Kil KE. Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for imaging of CXCR3 receptor in mouse models of atherosclerosis. EJNMMI Res 2023; 13:67. [PMID: 37438543 PMCID: PMC10338423 DOI: 10.1186/s13550-023-01017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND CXCR3 is a chemokine receptor and is expressed in innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, detection of CXCR3 by positron emission tomography (PET) radiotracer can be a useful tool for detecting the development of atherosclerosis in a noninvasive manner. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. RESULTS The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured Ki values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [18F]1 was prepared by a two-step radiosynthesis with a decay-corrected radiochemical yield of 13 ± 2%, radiochemical purity > 99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (n = 6). The baseline studies showed that [18F]1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue in Apolipoprotein E (ApoE) knockout (KO) mice fed with a high-fat diet over 12 weeks. The uptake of [18F]1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [18F]1 in the abdominal aorta of C57BL/6 control mice fed with a normal diet were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. Immunohistochemistry studies demonstrated that [18F]1-positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [18F]1, and their CXCR3 expressions were minimal. CONCLUSION [18F]1 was synthesized with good radiochemical yield and high radiochemical purity. In PET imaging studies, [18F]1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [18F]1 visualized CXCR3 expression in different regions in mice aligned with the tissue histology studies. Taken together, [18F]1 is a potential PET radiotracer for imaging CXCR3 in atherosclerosis.
Collapse
Affiliation(s)
- Santosh R Alluri
- University of Missouri Research Reactor, University of Missouri, 1513 Research Park Drive, Columbia, MO, 65211, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06519, USA
| | - Yusuke Higashi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ashley Berendzen
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Lisa D Watkinson
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Kamlendra Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Timothy J Hoffman
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Terry Carmack
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Elizabeth A Devanny
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Miles Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, 1513 Research Park Drive, Columbia, MO, 65211, USA.
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Alluri SR, Higashi Y, Berendzen A, Grisanti LA, Watkinson LD, Singh K, Hoffman TJ, Carmack T, Devanny EA, Tanner M, Kil KE. Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for imaging of CXCR3 receptor in mouse models of atherosclerosis. RESEARCH SQUARE 2023:rs.3.rs-2539952. [PMID: 36865232 PMCID: PMC9980197 DOI: 10.21203/rs.3.rs-2539952/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background: CXCR3 is a chemokine receptor and is expressed on innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, the detection of CXCR3 by positron emission tomography (PET) radiotracer may be a useful tool to detect atherosclerosis development noninvasively. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18 F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. Methods: The reference standard ( S )-2-(5-chloro-6-(4-(1-(4-chloro-2-fluorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)pyridin-3-yl)-1,3,4-oxadiazole ( 1 ) and its corresponding precursor 9 were synthesized using organic syntheses. The radiotracer [ 18 F] 1 was prepared in one-pot, two-step synthesis via aromatic 18 F-substitution followed by reductive amination. Cell binding assays were conducted using 1 , [ 125 I]CXCL10, and CXCR3A- and CXCR3B-transfected human embryonic kidney (HEK) 293 cells. Dynamic PET imaging studies over 90 min were performed on C57BL/6 and apolipoprotein E (ApoE) knockout (KO) mice that were subjected to a normal and high-fat diet for 12 weeks, respectively. Blocking studies were conducted with preadministration of the hydrochloride salt of 1 (5 mg/kg) to assess the binding specificity. Time-activity curves (TACs) for [ 18 F] 1 in both mice were used to extract standard uptake values (SUVs). Biodistribution studies were performed on C57BL/6 mice, and the distribution of CXCR3 in the abdominal aorta of ApoE KO mice was assessed by immunohistochemistry (IHC). Results: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured K i values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [ 18 F] 1 was prepared with decay-corrected radiochemical yield (RCY) of 13 ± 2%, radiochemical purity (RCP) >99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (EOS) ( n =6). The baseline studies showed that [ 18 F] 1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue (BAT) in ApoE KO mice. The uptake of [ 18 F] 1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [ 18 F] 1 in the abdominal aorta of C57BL/6 mice were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. IHC studies demonstrated that [ 18 F] 1 -positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [ 18 F] 1 , and their CXCR3 expressions were minimal. Conclusion: The novel radiotracer, [ 18 F] 1 was synthesized with good RCY and high RCP. In PET imaging studies, [ 18 F] 1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [ 18 F] 1 visualized CXCR3 expression in different regions in mice is in line with the tissue histology studies. Taken together, [ 18 F] 1 is a potential PET radiotracer for the imaging of CXCR3 in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Terry Carmack
- Truman VA: Harry S Truman Memorial Veterans' Hospital
| | | | - Miles Tanner
- University of Missouri College of Veterinary Medicine
| | | |
Collapse
|
3
|
The potential role of the cholecystokinin system in declarative memory. Neurochem Int 2023; 162:105440. [PMID: 36375634 DOI: 10.1016/j.neuint.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
As one of the most abundant neuropeptides in the central nervous system, cholecystokinin (CCK) has been suggested to be associated with higher brain functions, including learning and memory. In this review, we examined the potential role of the CCK system in declarative memory. First, we summarized behavioral studies that provide evidence for an important role of CCK in two forms of declarative memory-fear memory and spatial memory. Subsequently, we examined the electrophysiological studies that support the diverse roles of CCK-2 receptor activation in neocortical and hippocampal synaptic plasticity, and discussed the potential mechanisms that may be involved. Last but not least, we discussed whether the reported CCK-mediated synaptic plasticity can explain the strong influence of the CCK signaling system in neocortex and hippocampus dependent declarative memory. The available research supports the role of CCK-mediated synaptic plasticity in neocortex dependent declarative memory acquisition, but further study on the association between CCK-mediated synaptic plasticity and neocortex dependent declarative memory consolidation and retrieval is necessary. Although a direct link between CCK-mediated synaptic plasticity and hippocampus dependent declarative memory is missing, noticeable evidence from morphological, behavioral, and electrophysiological studies encourages further investigation regarding the potential role of CCK-dependent synaptic plasticity in hippocampus dependent declarative memory.
Collapse
|
4
|
Wang R, Lu Y, Cicha MZ, Singh MV, Benson CJ, Madden CJ, Chapleau MW, Abboud FM. TMEM16B determines cholecystokinin sensitivity of intestinal vagal afferents of nodose neurons. JCI Insight 2019; 4:122058. [PMID: 30843875 DOI: 10.1172/jci.insight.122058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
The satiety effects and metabolic actions of cholecystokinin (CCK) have been recognized as potential therapeutic targets in obesity for decades. We identified a potentially novel Ca2+-activated chloride (Cl-) current (CaCC) that is induced by CCK in intestinal vagal afferents of nodose neurons. The CaCC subunit Anoctamin 2 (Ano2/TMEM16B) is the dominant contributor to this current. Its expression is reduced, as is CCK current activity in obese mice on a high-fat diet (HFD). Reduced expression of TMEM16B in the heterozygote KO of the channel in sensory neurons results in an obese phenotype with a loss of CCK sensitivity in intestinal nodose neurons, a loss of CCK-induced satiety, and metabolic changes, including decreased energy expenditure. The effect on energy expenditure is further supported by evidence in rats showing that CCK enhances sympathetic nerve activity and thermogenesis in brown adipose tissue, and these effects are abrogated by a HFD and vagotomy. Our findings reveal that Ano2/TMEM16B is a Ca2+-activated chloride channel in vagal afferents of nodose neurons and a major determinant of CCK-induced satiety, body weight control, and energy expenditure, making it a potential therapeutic target in obesity.
Collapse
Affiliation(s)
- Runping Wang
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Yongjun Lu
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Michael Z Cicha
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Madhu V Singh
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and
| | - Christopher J Benson
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark W Chapleau
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - François M Abboud
- Department of Internal Medicine.,Abboud Cardiovascular Research Center, and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|