1
|
Liu Y, Duan Y, Zhao N, Zhu X, Yu X, Jiao S, Song Y, Shi L, Ma Y, Wang X, Yu B, Qu A. Peroxisome Proliferator-Activated Receptor α Attenuates Hypertensive Vascular Remodeling by Protecting Vascular Smooth Muscle Cells from Angiotensin II-Induced ROS Production. Antioxidants (Basel) 2022; 11:antiox11122378. [PMID: 36552585 PMCID: PMC9774484 DOI: 10.3390/antiox11122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular remodeling is the fundamental basis for hypertensive disease, in which vascular smooth muscle cell (VSMC) dysfunction plays an essential role. Previous studies suggest that the activation of peroxisome proliferator-activated receptor α (PPARα) by fibrate drugs has cardiovascular benefits independent of the lipid-lowering effects. However, the underlying mechanism remains incompletely understood. This study explored the role of PPARα in angiotensin II (Ang II)-induced vascular remodeling and hypertension using VSMC-specific Ppara-deficient mice. The PPARα expression was markedly downregulated in the VSMCs upon Ang II treatment. A PPARα deficiency in the VSMC significantly aggravated the Ang II-induced hypertension and vascular stiffness, with little influence on the cardiac function. The morphological analyses demonstrated that VSMC-specific Ppara-deficient mice exhibited an aggravated vascular remodeling and oxidative stress. In vitro, a PPARα deficiency dramatically increased the production of mitochondrial reactive oxidative species (ROS) in Ang II-treated primary VSMCs. Finally, the PPARα activation by Wy14643 improved the Ang II-induced ROS production and vascular remodeling in a VSMC PPARα-dependent manner. Taken together, these data suggest that PPARα plays a critical protective role in Ang II-induced hypertension via attenuating ROS production in VSMCs, thus providing a potential therapeutic target for hypertensive diseases.
Collapse
Affiliation(s)
- Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Yutao Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Correspondence:
| |
Collapse
|
2
|
Jesus RLC, Silva ILP, Araújo FA, Moraes RA, Silva LB, Brito DS, Lima GBC, Alves QL, Silva DF. 7-Hydroxycoumarin Induces Vasorelaxation in Animals with Essential Hypertension: Focus on Potassium Channels and Intracellular Ca 2+ Mobilization. Molecules 2022; 27:7324. [PMID: 36364149 PMCID: PMC9655823 DOI: 10.3390/molecules27217324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 μM-300 μM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200-300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery's responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation.
Collapse
Affiliation(s)
- Rafael L. C. Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Isnar L. P. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Fênix A. Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Raiana A. Moraes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Liliane B. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Daniele S. Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Gabriela B. C. Lima
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Quiara L. Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Darizy F. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| |
Collapse
|
3
|
Guerra-Ojeda S, Marchio P, Gimeno-Raga M, Arias-Mutis ÓJ, San-Miguel T, Valles S, Aldasoro M, Vila JM, Zarzoso M, Mauricio MD. PPARγ as an indicator of vascular function in an experimental model of metabolic syndrome in rabbits. Atherosclerosis 2021; 332:16-23. [PMID: 34375909 DOI: 10.1016/j.atherosclerosis.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Underlying mechanisms associated with vascular dysfunction in metabolic syndrome (MetS) remain unclear and can even vary from one vascular bed to another. METHODS In this study, MetS was induced by a high-fat, high-sucrose diet, and after 28 weeks, aorta and renal arteries were removed and used for isometric recording of tension in organ baths, protein expression by Western blot, and histological analysis to assess the presence of atherosclerosis. RESULTS MetS induced a mild hypertension, pre-diabetes, central obesity and dyslipidaemia. Our results indicated that MetS did not change the contractile response in either the aorta or renal artery. Conversely, vasodilation was affected in both arteries in a different way. The aorta from MetS showed vascular dysfunction, including lower response to acetylcholine and sodium nitroprusside, while the renal artery from MetS presented a preserved relaxation to acetylcholine and an increased sensitivity to sodium nitroprusside. We did not find vascular oxidative stress in the aorta from MetS, but we found a significant decrease in PPARγ, phospho-Akt (p-Akt) and phospho-eNOS (p-eNOS) protein expression. On the other hand, we found oxidative stress in the renal artery from MetS, and PPARγ, Akt and p-Akt were overexpressed. No evidence of atherosclerosis was found in arteries from MetS. CONCLUSIONS MetS affects vascular function differently depending on the vessel. In the aorta, it decreases both the vasodilation and the expression of the PPARγ/Akt/eNOS pathway, while in the renal artery, it increases the expression of PPARγ/Akt signalling pathway without decreasing the vasodilation.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Marc Gimeno-Raga
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Óscar Julián Arias-Mutis
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Teresa San-Miguel
- Department of Pathology. School of Medicine. University of Valencia, Valencia, Spain
| | - Soraya Valles
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M Vila
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Manuel Zarzoso
- Department of Physiotherapy. School of Physiotherapy. University of Valencia, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
4
|
Chen H, Vanhoutte PM, Leung SWS. Vascular adenosine monophosphate-activated protein kinase: Enhancer, brake or both? Basic Clin Pharmacol Toxicol 2019; 127:81-91. [PMID: 31671245 DOI: 10.1111/bcpt.13357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), expressed/present ubiquitously in the body, contributes to metabolic regulation. In the vasculature, activation of AMPK is associated with several beneficial biological effects including enhancement of vasodilatation, reduction of oxidative stress and inhibition of inflammatory reactions. The vascular protective effects of certain anti-diabetic (metformin and sitagliptin) or lipid-lowering (simvastatin and fenofibrate) therapeutic agents, of active components of Chinese medicinal herbs (resveratrol and berberine) and of pharmacological agents (AICAR, A769662 and PT1) have been attributed to the activation of AMPK (in endothelial cells, vascular smooth muscle cells and/or perivascular adipocytes), independently of changes in the metabolic profile (eg glucose tolerance and/or plasma lipoprotein levels), leading to improved endothelium-derived nitric oxide-mediated vasodilatation and attenuated endothelium-derived cyclooxygenase-dependent vasoconstriction. By contrast, endothelial AMPK activation with pharmacological agents or by genetic modification is associated with reduced endothelium-dependent relaxations in small blood vessels and elevated systolic blood pressure. Indeed, AMPK activators inhibit endothelium-dependent hyperpolarization (EDH)-type relaxations in superior mesenteric arteries, partly by inhibiting endothelial calcium-activated potassium channel signalling. Therefore, AMPK activation is not necessarily beneficial in terms of endothelial function. The contribution of endothelial AMPK in the regulation of vascular tone, in particular in the microvasculature where EDH plays a more important role, remains to be characterized.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Chen H, Man RYK, Leung SWS. PPAR-α agonists acutely inhibit Ca 2+-independent PLA 2 to reduce H 2O 2-induced contractions in aortae of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2017; 314:H681-H691. [PMID: 29127234 DOI: 10.1152/ajpheart.00314.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hypertension is associated with endothelial dysfunction, which favors the release of endothelium-derived contracting factors, including vasoconstrictor prostanoids and reactive oxygen species. Peroxisome proliferator-activated receptor-α (PPAR-α) agonists, clinically used as lipid-lowering drugs, possess antioxidant properties and exert beneficial effects in the vascular system. The present study aimed to identify the mechanism(s) underlying the acute effects of the PPAR-α agonists Wy14643 and fenofibate on endothelium-dependent contractions, in particular those related to oxidative stress, in the aorta of the spontaneously hypertensive rat (SHR). Aortic rings with and without endothelium of male SHRs and normotensive Wistar-Kyoto rats were suspended in organ chambers for isometric tension measurements and homogenized for enzyme activity assays. Contractions to acetylcholine in quiescent SHR aortae with endothelium were reduced by tiron (superoxide anion scavenger), diethyldithiocarbamic acid (superoxide dismutase inhibitor), and acute treatment with either Wy14643 or fenofibrate. Similarly to contractions evoked by acetylcholine, H2O2-induced increases in tension in SHR aortae involved, in succession, phospholipase A2 (PLA2), cyclooxygenase, and thromboxane-prostanoid receptors. Wy14643 or fenofibrate, by decreasing the activity of endothelial Ca2+-independent PLA2, attenuated the contractions to H2O2. In conclusion, the increased oxidative stress in the SHR aorta (mainly increased production of H2O2 and its partially reduced product, hydroxyl radical) contributed to acetylcholine-induced, endothelium-dependent contractions; PPAR-α agonists likely inhibit the H2O2-mediated contractions by inhibiting endothelial Ca2+-independent PLA2. The present study highlights the prospective therapeutic effects of PPAR-α agonists in improving endothelial function in hypertension and other vascular implications due to oxidative stress. NEW & NOTEWORTHY Peroxisome proliferator-activated receptor-α agonists, which are used clinically as lipid-lowering drugs, acutely reduce H2O2-induced contractions in aortae of hypertensive rats by inhibiting the activity of endothelial Ca2+-independent phospholipase A2. These vascular effects of peroxisome proliferator-activated receptor-α agonists suggest that they may help to prevent vascular complications under pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Ricky Y K Man
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Pirinixic acids: flexible fatty acid mimetics with various biological activities. Future Med Chem 2015; 7:1597-616. [DOI: 10.4155/fmc.15.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pirinixic acid is a typical fatty acid mimetic and was developed as synthetic antihyperlipidemic agent. While its target remained unknown in the early development, it has later been characterized as dual PPARα/γ agonist. Based on this activity, pirinixic acid has served as a lead compound for several structure–activity relationship (SAR) studies addressing diverse targets for lipid mimetics. Many structural variants of pirinixic acid descendants have been developed and thereby potent agents on metabolic, inflammatory and neuroprotective targets were discovered of which some have proven in vivo efficacy. This article reviews pirinixic acid descendants along with their in vitro-pharmacological profiles, summarizes their in vivo data and finally gives a future perspective for this valuable class of fatty acid mimetics.
Collapse
|