1
|
Verma K, Prasanth MI, Tencomnao T, Brimson JM. Ligand docking in the sigma-1 receptor compared to the sigma-1 receptor-BiP complex and the effects of agonists and antagonists on C. elegans lifespans. Biomed Pharmacother 2025; 182:117783. [PMID: 39729653 DOI: 10.1016/j.biopha.2024.117783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's. Ligand docking revealed that common σ1R antagonists generally exhibited stronger σ1R binding than commonly used agonists. Human σ1R showed high binding affinity for S1RA and NE100. Orthologs in yeast, slime mold, and C. elegans displayed varied binding affinities, indicating evolutionary adaptation in their binding pockets. We evaluated the relevance of σ1R-ligand interactions in C. elegans, measuring life-spans showing the impact of ligands on lifespan depends on genetic background and amyloid-beta pathology. Haloperidol (5-10 mM) extended wild-type worms' lifespan, but this effect was absent in the σ1R-KO, suggesting at least a partial role for the σ1R. Fluoxetine (5-10 mM) also promoted a small increase in longevity in wild-type worms but was not seen in the σ1R-KO strain. BD1047 (5 & 10 mM) reduced the lifespan of amyloid-beta-expressing transgenic worms, whereas dipentylamine (DPA) (5 mM) significantly increased the lifespan in a σ1R antagonist-sensitive manner. These findings highlight the importance of the σ1R in neurodegeneration and suggest that ligand interactions are modulated by BiP. Further research using in-vitro and in-vivo models is needed to clarify σ1R's therapeutic potential in neurodegenerative diseases, where modulating σ1R could provide neuroprotective effects.
Collapse
Affiliation(s)
- Kanika Verma
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mani Iyer Prasanth
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Ma H, Li JF, Qiao X, Zhang Y, Hou XJ, Chang HX, Chen HL, Zhang Y, Li YF. Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels. Acta Pharmacol Sin 2024; 45:704-713. [PMID: 38097715 PMCID: PMC10943013 DOI: 10.1038/s41401-023-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg-1·d-1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg-1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg-1·d-1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.
Collapse
Affiliation(s)
- Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Qiao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of the People's Republic of China, Beijing, 100083, China.
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100083, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
3
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
4
|
Matsushima Y, Terada K, Kamei C, Sugimoto Y. Sertraline inhibits nerve growth factor-induced neurite outgrowth in PC12 cells via a mechanism involving the sigma-1 receptor. Eur J Pharmacol 2019; 853:129-135. [PMID: 30902656 DOI: 10.1016/j.ejphar.2019.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The selective serotonin reuptake inhibitors (SSRIs) fluvoxamine and sertraline show a high affinity for sigma-1 receptors. Fluvoxamine enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells via a sigma-1 receptor-mediated mechanism, which suggests that neurogenesis may be involved in the antidepressant action of fluvoxamine. However, the effects of sertraline on neurite outgrowth remain unclear. Here, we report the effects of sertraline on NGF-induced neurite outgrowth in PC12 cells. At concentrations above 0.3 μM, sertraline inhibited neurite outgrowth induced by NGF (50 ng/mL) in PC12 cells in a concentration-dependent manner. At 0.3-3 μM, sertraline inhibited NGF-induced neurite outgrowth; however, had no effect on cell viability. This suggests that at these concentrations, sertraline inhibits NGF-induced neurite outgrowth without causing cell toxicity. Because sertraline has a high affinity for the sigma-1 receptor, we investigated whether this receptor is involved in sertraline's inhibitory effect on NGF-induced neurite outgrowth. The effect was reversed by both the sigma-1 receptor agonist PRE-084 and the sigma-1 receptor antagonist NE-100. These results suggest that sertraline inhibits NGF-induced neurite outgrowth in PC12 cells by acting as an inverse agonist of the sigma-1 receptor in this system.
Collapse
Affiliation(s)
- Yukari Matsushima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan; Department of Kampo and Natural Product Chemistry, Yokohama University of Pharmacy, 601 Matanocho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiaki Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Yumi Sugimoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
5
|
Feng HJ, Faingold CL. Abnormalities of serotonergic neurotransmission in animal models of SUDEP. Epilepsy Behav 2017; 71:174-180. [PMID: 26272185 PMCID: PMC4749463 DOI: 10.1016/j.yebeh.2015.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 12/25/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a devastating event, and both DBA/1 and DBA/2 mice have been shown to be relevant animal models for studying SUDEP. DBA mice exhibit seizure-induced respiratory arrest (S-IRA), leading to cardiac arrest and subsequent sudden death after generalized audiogenic seizures (AGSs). This sequence of terminal events is also observed in the majority of witnessed human SUDEP cases. Several pathophysiological mechanisms, including respiratory/cardiac dysfunction, have been proposed to contribute to human SUDEP. Several (but not all) selective serotonin (5-HT) reuptake inhibitors (SSRIs), including fluoxetine, can reversibly block S-IRA, and abnormal expression of 5-HT receptors is found in the brainstem of DBA mice. DBA mice, which do not initially show S-IRA, exhibit S-IRA after treatment with a nonselective 5-HT antagonist. These studies suggest that abnormalities of 5-HT neurotransmission are involved in the pathogenesis of S-IRA in DBA mice. Serotonergic (5-HT) transmission plays an important role in normal respiration, and DBA mice exhibiting S-IRA can be resuscitated using a rodent ventilator. It is important and interesting to know if fluoxetine blocks S-IRA in DBA mice by enhancing respiratory ventilation. To test this, the effects of breathing stimulants, doxapram, and 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine (PK-THPP) were compared with the effects of fluoxetine on S-IRA in DBA/1 mice. Although fluoxetine reduces the incidence of S-IRA in DBA/1 mice, as reported previously, the same dose of fluoxetine fails to enhance baseline respiratory ventilation in the absence of AGSs. Doxapram and PK-THPP augment the baseline ventilation in DBA/1 mice. However, these breathing stimulants are ineffective in preventing S-IRA in DBA/1 mice. These data suggest that fluoxetine blocks S-IRA in DBA/1 mice by cellular/molecular mechanisms other than enhancement of basal ventilation. Future research directions are also discussed. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Carl L. Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, Illinois 62794, U.S.A
| |
Collapse
|
6
|
Faingold CL, Randall M, Zeng C, Peng S, Long X, Feng HJ. Serotonergic agents act on 5-HT 3 receptors in the brain to block seizure-induced respiratory arrest in the DBA/1 mouse model of SUDEP. Epilepsy Behav 2016; 64:166-170. [PMID: 27743549 PMCID: PMC5123739 DOI: 10.1016/j.yebeh.2016.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022]
Abstract
Drugs that enhance the action of serotonin (5-hydroxytrypamine, 5-HT), including several selective serotonin reuptake inhibitors (SSRIs), reduce susceptibility to seizure-induced respiratory arrest (S-IRA) that leads to death in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). However, it is not clear if specific 5-HT receptors are important in the action of these drugs and whether the brain is the major site of action of these agents in this SUDEP model. The current study examined the actions of agents that affect the 5-HT3 receptor subtype on S-IRA and whether intracerebroventricular (ICV) microinjection of an SSRI would reduce S-IRA susceptibility in DBA/1 mice. The data indicate that systemic administration of SR 57227, a 5-HT3 agonist, was effective in blocking S-IRA in doses that did not block seizures, and the S-IRA blocking effect of the SSRI, fluoxetine, was abolished by coadministration of a 5-HT3 antagonist, ondansetron. Intracerebroventricular administration of fluoxetine in the present study was also able to block S-IRA without blocking seizures. These findings suggest that 5-HT3 receptors play an important role in the block of S-IRA by serotonergic agents, such as SSRIs, which is consistent with the abnormal expression of 5-HT3 receptors in the brainstem of DBA mice observed previously. Taken together, these data indicate that systemically administered serotonergic agents act, at least, in part, in the brain, to reduce S-IRA susceptibility in DBA/1 mice and that 5-HT3 receptors may be important to this effect.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL, USA.
| | - Marcus Randall
- Department of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL, USA
| | - Chang Zeng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Shifang Peng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Lenart L, Hodrea J, Hosszu A, Koszegi S, Zelena D, Balogh D, Szkibinszkij E, Veres-Szekely A, Wagner L, Vannay A, Szabo AJ, Fekete A. The role of sigma-1 receptor and brain-derived neurotrophic factor in the development of diabetes and comorbid depression in streptozotocin-induced diabetic rats. Psychopharmacology (Berl) 2016; 233:1269-78. [PMID: 26809458 DOI: 10.1007/s00213-016-4209-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
Abstract
RATIONALE Depression is highly prevalent in diabetes (DM). Brain-derived neurotrophic factor (BDNF) which is mainly regulated by the endoplasmic reticulum chaperon sigma-1 receptor (S1R) plays a relevant role in the development of depression. OBJECTIVES We studied the dose-dependent efficacy of S1R agonist fluvoxamine (FLU) in the prevention of DM-induced depression and investigated the significance of the S1R-BDNF pathway. METHODS We used streptozotocin to induce DM in adult male rats that were treated for 2 weeks p.o. with either different doses of FLU (2 or 20 mg/bwkg) or FLU + S1R antagonist NE100 (1 mg/bwkg) or vehicle. Healthy controls were also enrolled. Metabolic, behaviour, and neuroendocrine changes were determined, and S1R and BDNF levels were measured in the different brain regions. RESULTS In DM rats, immobility time was increased, adrenal glands were enlarged, and thymuses were involuted. FLU in 20 mg/bwkg, but not in 2 mg/bwkg dosage, ameliorated depression-like behaviour. S1R and BDNF protein levels were decreased in DM, while FLU induced SIR-BDNF production. NE100 suspended all effects of FLU. CONCLUSIONS We suggest that disturbed S1R-BDNF signaling in the brain plays a relevant role in DM-induced depression. The activation of this cascade serves as an additional target in the prevention of DM-associated depression.
Collapse
Affiliation(s)
- Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Zelena
- Institute of Experimental Medicine, Budapest, Hungary
| | - Dora Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
| | - Edgar Szkibinszkij
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Apor Veres-Szekely
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, 1083, Budapest, Hungary.
| |
Collapse
|
8
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
9
|
Hong DH, Li H, Kim HS, Kim HW, Shin SE, Jung WK, Na SH, Choi IW, Firth AL, Park WS, Kim DJ. The Effects of the Selective Serotonin Reuptake Inhibitor Fluvoxamine on Voltage-Dependent K + Channels in Rabbit Coronary Arterial Smooth Muscle Cells. Biol Pharm Bull 2015; 38:1208-13. [DOI: 10.1248/bpb.b15-00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Da Hye Hong
- Department of Physiology, Kangwon National University School of Medicine
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine
| | - Han Sol Kim
- Department of Physiology, Kangwon National University School of Medicine
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine
| | | | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Kangwon National University School of Medicine
| |
Collapse
|
10
|
Ramakrishnan NK, Visser AKD, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with (11)C-SA4503 and microPET. Psychopharmacology (Berl) 2014; 231:3997-4006. [PMID: 24639047 DOI: 10.1007/s00213-014-3533-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Sigma-1 receptor agonists are under investigation as potential disease-modifying agents for several CNS disorders. Donepezil, an acetylcholinesterase inhibitor used for the symptomatic treatment of Alzheimer's disease, is also a high-affinity sigma-1 agonist. OBJECTIVES The objectives of the present study were to investigate if the sigma-1 agonist tracer (11)C-SA4503 and microPET can be used to determine sigma-1 receptor occupancy (RO) of donepezil in the rat brain; to establish RO of donepezil at doses commonly used in rodent behavioural studies; and to determine the effective plasma concentration of donepezil required for 50 % of max-min occupancy (EC50). METHODS Male Wistar rats were pre-treated with donepezil (0.1 to 10 mg/kg) for about 1 h before microPET scans using (11)C-SA4503. The total distribution volume (V T) of the tracer was determined by Logan graphical analysis using time activity curves from arterial plasma and regions of interest drawn around the entire brain and individual brain regions. RO by donepezil was calculated from a modified Lassen plot, and ED50 was estimated from the sigmoidal dose-response curves obtained when the RO was plotted against log donepezil dose. RESULTS A dose-dependent reduction was observed for V T in the whole brain as well as individual brain regions. RO increased dose-dependently and was 93 % at 10 mg/kg. ED50 was 1.29 mg/kg. CONCLUSIONS Donepezil, in the common dose range, was found to dose-dependently occupy a significant fraction of the sigma-1 receptor population. The data indicate that it is possible to determine sigma-1 RO by an agonist drug in rat brain, using (11)C-SA4503 and microPET.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Faingold CL, Kommajosyula SP, Long X, Plath K, Randall M. Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav 2014; 37:198-203. [PMID: 25064738 DOI: 10.1016/j.yebeh.2014.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 11/18/2022]
Abstract
In the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP), administration of a selective serotonin (5-HT) reuptake inhibitor (SSRI), fluvoxamine, completely suppressed seizure-induced respiratory arrest (S-IRA) at 30 min after administration (i.p.) in a dose-related manner without blocking audiogenic seizures (AGSz), but another SSRI, paroxetine, reduced S-IRA but with a delayed (24 h) onset and significant toxicity. A serotonin-norepinephrine reuptake inhibitor, venlafaxine, reduced S-IRA incidence, but higher doses were ineffective. A selective 5-HT7 agonist, AS-19, was totally ineffective in reducing S-IRA. In developing DBA/1 mice that had not previously experienced AGSz, administration of a nonselective 5-HT antagonist, cyproheptadine, induced a significantly greater incidence of S-IRA than that of saline. This study confirms that certain drugs that enhance the activation of 5-HT receptors are able to prevent S-IRA, but not all serotonergic drugs are equally effective, which may be relevant to the potential use of these drugs for SUDEP prevention. Serotonergic antagonists may be problematic in patients with epilepsy.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | - Srinivasa P Kommajosyula
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - X Long
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Kristin Plath
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Marcus Randall
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| |
Collapse
|
12
|
Su DA, Jiang RY, Liu N, Ding LC, Wang DAM, Yu HY, Yan ES, Zhu MH, Zhu B. Effects of BD1047, a σ 1 receptor antagonist, on the expression of mTOR, Camk2γ and GSK-3β in fluvoxamine-treated N2a cells. Exp Ther Med 2013; 7:435-438. [PMID: 24396420 PMCID: PMC3881039 DOI: 10.3892/etm.2013.1438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022] Open
Abstract
Fluvoxamine, a common antidepressant agent, is designed to exert its pharmacological effect by inhibiting synaptic serotonin reuptake. However, increasing evidence has demonstrated that σ1 receptors are likely to be involved in the mechanism of action of fluvoxamine. The present study aimed to observe the effects of fluvoxamine on the expression levels of mammalian target of rapamycin (mTOR), Ca2+/calmodulin-dependent protein kinase 2γ (Camk2γ) and glycogen synthase kinase-3β (GSK-3β) in fluvoxamine-treated N2a cells and attempted to elucidate whether σ1 receptors mediate the pharmacological effects of fluvoxamine. The N2a cells were randomly divided into three groups (each n=6): DMEM group (D group), 0.5 μmol/l fluvoxamine group (F group) and 0.2 μmol/l BD1047 (a σ1 receptor antagonist) + 0.5 μmol/l fluvoxamine group (BF group). Western blotting was used to determine the expression levels of mTOR, Camk2γ and GSK-3β in the cultured N2a cells after two days of incubation. The F group exhibited significant increases in the expression levels of mTOR and Camk2γ and a significant reduction in the expression levels of GSK-3β compared with those in the D group (P<0.01). By contrast, the BF group demonstrated significant reductions in the expression levels of mTOR and Camk2γ and a significant increase in the expression levels of GSK-3β, compared with those in the F group (P<0.01). These results suggest that σ1 receptors mediate fluvoxamine-elicited changes in the expression levels of mTOR, Camk2γ and GSK-3β in N2a cells, which indicates that σ1 receptors are likely to be involved in the pharmacological effects of fluvoxamine.
Collapse
Affiliation(s)
- Dong-An Su
- Department of Anesthesiology, The PLA 102 Hospital, Second Military Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Ri-Yue Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Liang-Cai Ding
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - DA-Ming Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hai-Ying Yu
- Department of Psychiatry, The PLA 102 Hospital, Second Military Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - En-Shi Yan
- Department of Anesthesiology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Hua Zhu
- Department of Anesthesiology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|