1
|
Role of Orai1 and L-type Ca V1.2 channels in Endothelin-1 mediated coronary contraction under ischemia and reperfusion. Cell Calcium 2020; 86:102157. [PMID: 31926404 DOI: 10.1016/j.ceca.2019.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Ischemia and Reperfusion (I/R) injuries are associated with coronary artery hypercontracture. They are mainly originated by an exacerbated response to agonists released by endothelium such as Endothelin (ET-1), involving the alteration in intracellular calcium handling. Recent evidences have highlighted the implication of Store-Operated Calcium Channels (SOCC) in intracellular calcium homeostasis in coronary artery. However, little is known about the role of SOCC in the regulation of coronary vascular tone under I/R. The aim of this study was to evaluate the role of SOCC and l-type Ca2+ channels (LTCC) in coronary artery vasoconstriction originated by ET-1 in I/R. We used Left Anterior Descendent coronary artery (LAD) rings, isolated from Wistar rats, to study the contractility and intracellular Ca2+ concentration ([Ca2+]i) under a simulated I/R protocol. We observed that responses to high-KCL induced depolarization and caffeine-induced Ca2+ release are attenuated in coronary artery under I/R. Furthermore, ET-1 addition in ischemia promotes transient and small rise of [Ca2+]i and coronary vascular tone. Meanwhile, these effects are significantly potentiated during reperfusion. The resulting ET-1-induced vasoconstrictions and [Ca2+]i increase were abolished by; GSK-7975A and gadolinium, inhibitors of SOCC; and nifedipine a widely used inhibitor of LTCC. Interestingly, using in situ Proximity Ligation Assay (PLA) in isolated coronary smooth muscle cells we found significant colocalization of LTCC CaV1.2 isoform with Orai1, the pore forming subunit of SOCC, and TRPC1 under I/R. Our data suggest that hypercontraction of coronary artery induced by ET-1 after I/R involves the co-activation of LTCC and SOCC, which colocalize significantly in the sarcolemma of coronary smooth muscle cells.
Collapse
|
2
|
Guan Z, Baty JJ, Zhang S, Remedies CE, Inscho EW. Rho kinase inhibitors reduce voltage-dependent Ca 2+ channel signaling in aortic and renal microvascular smooth muscle cells. Am J Physiol Renal Physiol 2019; 317:F1132-F1141. [PMID: 31432708 PMCID: PMC6879933 DOI: 10.1152/ajprenal.00212.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
Voltage-dependent L-type Ca2+ channels (L-VDCCs) and the RhoA/Rho kinase pathway are two predominant intracellular signaling pathways that regulate renal microvascular reactivity. Traditionally, these two pathways have been thought to act independently; however, recent evidence suggests that these pathways could be convergent. We hypothesized that Rho kinase inhibitors can influence L-VDCC signaling. The effects of Rho kinase inhibitors Y-27632 or RKI-1447 on KCl-induced depolarization or the L-VDCC agonist Bay K8644 were assessed in afferent arterioles using an in vitro blood-perfused rat juxtamedullary nephron preparation. Superfusion of KCl (30-90 mM) led to concentration-dependent vasoconstriction of afferent arterioles. Administration of Y-27632 (1, 5, and 10 µM) or RKI-1447 (0.1, 1, and 10 µM) significantly increased the starting diameter by 16-65%. KCl-induced vasoconstriction was markedly attenuated with 5 and 10 µM Y-27632 and with 10 µM RKI-1447 (P < 0.05 vs. KCl alone). Y-27632 (5 µM) also significantly attenuated Bay K8644-induced vasoconstriction (P < 0.05). Changes in intracellular Ca2+ concentration ([Ca2+]i) were estimated by fura-2 fluorescence during KCl-induced depolarization in cultured A7r5 cells and in freshly isolated preglomerular microvascular smooth muscle cells. Administration of 90 mM KCl significantly increased fura-2 fluorescence in both cell types. KCl-mediated elevation of [Ca2+]i in A7r5 cells was suppressed by 1-10 µM Y-27632 (P < 0.05), but 10 µM Y-27632 was required to suppress Ca2+ responses in preglomerular microvascular smooth muscle cells. RKI-1447, however, significantly attenuated KCl-mediated elevation of [Ca2+]i. Y-27632 markedly inhibited Bay K8644-induced elevation of [Ca2+]i in both cell types. The results of the present study indicate that the Rho kinase inhibitors Y-27632 and RKI-1447 can partially inhibit L-VDCC function and participate in L-VDCC signaling.
Collapse
Affiliation(s)
- Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua J Baty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shali Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colton E Remedies
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Contribution of L-type Ca2+ channel-sarcoplasmic reticulum coupling to depolarization-induced arterial contraction in spontaneously hypertensive rats. Hypertens Res 2018; 41:730-737. [DOI: 10.1038/s41440-018-0076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 02/25/2018] [Indexed: 11/08/2022]
|
4
|
Guan Z, Wang F, Cui X, Inscho EW. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol (Oxf) 2018. [PMID: 28640982 DOI: 10.1111/apha.12913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Sphingosine-1-phosphate (S1P) influences resistance vessel function and is implicated in renal pathological processes. Previous studies revealed that S1P evoked potent vasoconstriction of the pre-glomerular microvasculature, but the underlying mechanisms remain incompletely defined. We postulated that S1P-mediated pre-glomerular microvascular vasoconstriction involves activation of voltage-dependent L-type calcium channels (L-VDCC) and the rho/rho kinase pathway. METHODS Afferent arteriolar reactivity was assessed in vitro using the blood-perfused rat juxtamedullary nephron preparation, and diameter was measured during exposure to physiological and pharmacological agents. RESULTS Exogenous S1P (10-9 -10-5 mol L-1 ) evoked concentration-dependent vasoconstriction of afferent arterioles. Superfusion with nifedipine, a L-VDCC blocker, increased arteriolar diameter by 39 ± 18% of baseline and significantly attenuated the S1P-induced vasoconstriction. Superfusion with the rho kinase inhibitor, Y-27632, increased diameter by 60 ± 12% of baseline and also significantly blunted vasoconstriction by S1P. Combined nifedipine and Y-27632 treatment significantly inhibited S1P-induced vasoconstriction over the entire concentration range tested. In contrast, depletion of intracellular Ca2+ stores with the Ca2+ -ATPase inhibitors, thapsigargin or cyclopiazonic acid, did not alter the S1P-mediated vasoconstrictor profile. Scavenging reactive oxygen species (ROS) or inhibition of nicotinamide adenine dinucleotide phosphate oxidase activity significantly attenuated S1P-mediated vasoconstriction. CONCLUSION Exogenous S1P elicits potent vasoconstriction of rat afferent arterioles. These data also demonstrate that S1P-mediated pre-glomerular vasoconstriction involves activation of L-VDCC, the rho/rho kinase pathway and ROS. Mobilization of Ca2+ from intracellular stores is not required for S1P-mediated vasoconstriction. These studies reveal a potential role for S1P in the modulation of renal microvascular tone.
Collapse
Affiliation(s)
- Z. Guan
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - F. Wang
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - X. Cui
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - E. W. Inscho
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
5
|
Veras RC, Silva DF, Bezerra LS, de Assis VL, de Vasconcelos WP, Alustau MDC, de Albuquerque JGF, Furtado FF, Araújo IGDA, de Azevedo FDLAA, Ribeiro TP, Barbosa-Filho JM, Gutierrez SJC, Medeiros IA. N-Salicyloyltryptamine, an N-Benzoyltryptamine Analogue, Induces Vasorelaxation through Activation of the NO/sGC Pathway and Reduction of Calcium Influx. Molecules 2018; 23:molecules23020253. [PMID: 29382081 PMCID: PMC6017111 DOI: 10.3390/molecules23020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 11/30/2022] Open
Abstract
Benzoyltryptamine analogues act as neuroprotective and spasmolytic agents on smooth muscles. In this study, we investigated the ability of N-salicyloyltryptamine (STP) to produce vasorelaxation and determined its underlying mechanisms of action. Isolated rat mesenteric arteries with and without functional endothelium were studied in an isometric contraction system in the presence or absence of pharmacological inhibitors. Amperometric experiments were used to measure the nitric oxide (NO) levels in CD31+ cells using flow cytometry. GH3 cells were used to measure Ca2+ currents using the whole cell patch clamp technique. STP caused endothelium-dependent and -independent relaxation in mesenteric rings. The endothelial-dependent relaxations in response to STP were markedly reduced by L-NAME (endothelial NO synthase—eNOS—inhibitor), jHydroxocobalamin (NO scavenger, 30 µM) and ODQ (soluble Guanylyl Cyclase—sGC—inhibitor, 10 µM), but were not affected by the inhibition of the formation of vasoactive prostanoids. These results were reinforced by the increased NO levels observed in the amperometric experiments with freshly dispersed CD31+ cells. The endothelium-independent effect appeared to involve the inhibition of voltage-gated Ca2+ channels, due to the inhibition of the concentration-response Ca2+ curves in depolarizing solution, the increased relaxation in rings that were pre-incubated with high extracellular KCl (80 mM), and the inhibition of macroscopic Ca2+ currents. The present findings show that the activation of the NO/sGC/cGMP pathway and the inhibition of gated-voltage Ca2+ channels are the mechanisms underlying the effect of STP on mesenteric arteries.
Collapse
Affiliation(s)
- Robson Cavalcante Veras
- Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58059-900, Brazil; (I.G.d.A.A.); (J.M.B.-F); (I.A.M.)
- Postgraduate Program of Nutrition Science/CCS/Federal University of Paraíba (UFPB);
- Correspondence: ; Tel.: +55-83-3216-7347
| | - Darizy Flávia Silva
- Department of Biorregulation, Federal University of Bahia (UFBA), Av. Reitor Miguel Calmon, S/N, Vale do Canela, Salvador 40110-902, Brazil;
| | | | - Valéria Lopes de Assis
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Walma Pereira de Vasconcelos
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Maria do Carmo Alustau
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - José George Ferreira de Albuquerque
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Fabíola Fialho Furtado
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | | | - Fátima de Lourdes Assunção Araújo de Azevedo
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Thais Porto Ribeiro
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - José Maria Barbosa-Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58059-900, Brazil; (I.G.d.A.A.); (J.M.B.-F); (I.A.M.)
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Stanley Juan Chavez Gutierrez
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| | - Isac Almeida Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58059-900, Brazil; (I.G.d.A.A.); (J.M.B.-F); (I.A.M.)
- Postgraduate Program of Natural Products and Bioactive Synthetics/CCS/Universidade Federal da Paraíba (UFPB), João Pessoa 58059-900, Brazil; (V.L.d.A.); (W.P.d.V.); (M.d.C.A.); (J.G.F.d.A.); (F.F.F.); (F.d.L.A.A.d.A.); (T.P.R.); (S.J.C.G.)
| |
Collapse
|
6
|
Xia Y, Khalil RA. Pregnancy-associated adaptations in [Ca2+]i-dependent and Ca2+ sensitization mechanisms of venous contraction: implications in pregnancy-related venous disorders. Am J Physiol Heart Circ Physiol 2016; 310:H1851-65. [PMID: 27199130 DOI: 10.1152/ajpheart.00876.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
Pregnancy is associated with significant adaptations in the maternal hemodynamics and arterial circulation, but the changes in the venous mechanisms during pregnancy are less clear. We hypothesized that pregnancy is associated with alterations in venous function, intracellular free Ca(2+) concentration ([Ca(2+)]i), and Ca(2+)-dependent mechanisms of venous contraction. Circular segments of inferior vena cava (IVC) from virgin and late pregnant (Preg, day 19) Sprague-Dawley rats were suspended between two hooks, labeled with fura-2, and placed in a cuvet inside a spectrofluorometer for simultaneous measurement of contraction and [Ca(2+)]i (fura-2 340/380 ratio). KCl (96 mM), which stimulates Ca(2+) influx, caused less contraction (35.6 ± 6.3 vs. 92.6 ± 19.9 mg/mg tissue) and smaller increases in [Ca(2+)]i (1.67 ± 0.12 vs. 2.19 ± 0.11) in Preg vs. virgin rat IVC. The α-adrenergic receptor agonist phenylephrine (Phe; 10(-5) M) caused less contraction (23.8 ± 3.4 vs. 70.9 ± 12.9 mg/mg tissue) and comparable increases in [Ca(2+)]i (1.76 ± 0.10 vs. 1.89 ± 0.08) in Preg vs. virgin rat IVC. At increasing extracellular Ca(2+) concentrations ([Ca(2+)]e) (0.1, 0.3, 0.6, 1, and 2.5 mM), KCl and Phe induced [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves that were reduced in Preg vs. virgin IVC, supporting reduced Ca(2+) entry mechanisms. The [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves were used to construct the [Ca(2+)]i-contraction relationship. Despite reduced contraction and [Ca(2+)]i in Preg IVC, the Phe-induced [Ca(2+)]i-contraction relationship was greater than that of KCl and was enhanced in Preg vs. virgin IVC, suggesting parallel activation of Ca(2+)-sensitization pathways. The Ca(2+) channel blocker diltiazem, protein kinase C (PKC) inhibitor GF-109203X, and Rho-kinase (ROCK) inhibitor Y27632 inhibited KCl- and Phe-induced contraction and abolished the shift in the Phe [Ca(2+)]i-contraction relationship in Preg IVC, suggesting an interplay between the decrease in Ca(2+) influx and possible compensatory activation of PKC- and ROCK-mediated Ca(2+)-sensitization pathways. The reduced [Ca(2+)]i and [Ca(2+)]i-dependent contraction in Preg rat IVC, despite the parallel rescue activation of Ca(2+)-sensitization pathways, suggests that the observed reduction in [Ca(2+)]i-dependent contraction mechanisms is likely underestimated, and that the veins without the rescue Ca(2+)-sensitization pathways could be even more prone to dilation during pregnancy. These pregnancy-associated reductions in Ca(2+) entry-dependent mechanisms of venous contraction, if occurring in human lower extremity veins and if not adequately compensated by Ca(2+)-sensitization pathways, may play a role in pregnancy-related venous disorders.
Collapse
Affiliation(s)
- Yin Xia
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Department of General Surgery, Fuzhou General Hospital, Fuzhou, Fujian, P. R. China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
7
|
Chung HK, Rathor N, Wang SR, Wang JY, Rao JN. RhoA enhances store-operated Ca2+ entry and intestinal epithelial restitution by interacting with TRPC1 after wounding. Am J Physiol Gastrointest Liver Physiol 2015; 309:G759-67. [PMID: 26336927 PMCID: PMC4628965 DOI: 10.1152/ajpgi.00185.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial wounds after injury. Our previous studies show that canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOC) in intestinal epithelial cells (IECs) and plays an important role in early epithelial restitution by increasing Ca(2+) influx. Here we further reported that RhoA, a small GTP-binding protein, interacts with and regulates TRPC1, thus enhancing SOC-mediated Ca(2+) entry (SOCE) and epithelial restitution after wounding. RhoA physically associated with TRPC1 and formed the RhoA/TRPC1 complexes, and this interaction increased in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1). Inactivation of RhoA by treating IEC-TRPC1 cells with exoenzyme C3 transferase (C3) or ectopic expression of dominant negative RhoA (DNMRhoA) reduced RhoA/TRPC1 complexes and inhibited Ca(2+) influx after store depletion, which was paralleled by an inhibition of cell migration over the wounded area. In contrast, ectopic expression of wild-type (WT)-RhoA increased the levels of RhoA/TRPC1 complexes, induced Ca(2+) influx through activation of SOCE, and promoted cell migration after wounding. TRPC1 silencing by transfecting stable WT RhoA-transfected cells with siRNA targeting TRPC1 (siTRPC1) reduced SOCE and repressed epithelial restitution. Moreover, ectopic overexpression of WT-RhoA in polyamine-deficient cells rescued the inhibition of Ca(2+) influx and cell migration induced by polyamine depletion. These findings indicate that RhoA interacts with and activates TRPC1 and thus stimulates rapid epithelial restitution after injury by inducing Ca(2+) signaling.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
8
|
Ma S, Deng J, Li B, Li X, Yan Z, Zhu J, Chen G, Wang Z, Jiang H, Miao L, Li J. Development of Second-Generation Small-Molecule RhoA Inhibitors with Enhanced Water Solubility, Tissue Potency, and Significant in vivo Efficacy. ChemMedChem 2014; 10:193-206. [DOI: 10.1002/cmdc.201402386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/24/2022]
|
9
|
TRPM4 channels couple purinergic receptor mechanoactivation and myogenic tone development in cerebral parenchymal arterioles. J Cereb Blood Flow Metab 2014; 34:1706-14. [PMID: 25099756 PMCID: PMC4269733 DOI: 10.1038/jcbfm.2014.139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 11/09/2022]
Abstract
Cerebral parenchymal arterioles (PAs) have a critical role in assuring appropriate blood flow and perfusion pressure within the brain. They are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to chemical stimulants, and enhanced myogenic tone development. The objective of the present study was to reveal some of the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. Here, we report that in vivo suppression of TRPM4 (transient receptor potential) channel expression, or inhibition of TRPM4 channels with 9-phenanthrol substantially reduced myogenic tone of isolated PAs, supporting a key role of TRPM4 channels in PA myogenic tone development. Further, downregulation of TRPM4 channels inhibited vasoconstriction induced by the specific P2Y4 and P2Y6 receptor ligands (UTPγS and UDP) by 37% and 42%, respectively. In addition, 9-phenanthrol substantially attenuated purinergic ligand-induced membrane depolarization and constriction of PAs, and inhibited ligand-evoked TRPM4 channel activation in isolated PA myocytes. In concert with our previous work showing the essential contributions of P2Y4 and P2Y6 receptors to myogenic regulation of PAs, the current results point to TRPM4 channels as an important link between mechanosensitive P2Y receptor activation and myogenic constriction of cerebral PAs.
Collapse
|
10
|
Sun J, Yang T, Wang P, Ma S, Zhu Z, Pu Y, Li L, Zhao Y, Xiong S, Liu D, Zhu Z. Activation of cold-sensing transient receptor potential melastatin subtype 8 antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway. Hypertension 2014; 63:1354-63. [PMID: 24637663 DOI: 10.1161/hypertensionaha.113.02573] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Environmental cold is a nonmodifiable hypertension risk factor. Transient receptor potential melastatin subtype 8 (TRPM8) is a cold-sensing cation channel that can be activated by menthol, a compound with a naturally cold sensation in mint. Little is known about the effect of TRPM8 activation on vascular function and blood pressure. Here, we report that TRPM8 is abundantly expressed in the vasculature. TRPM8 activation by menthol attenuated vasoconstriction via RhoA/Rho kinase pathway inhibition in wild-type mice, but the effect was absent in TRPM8(-/-) mice. Chronic dietary menthol blunted mesenteric arterial constriction and lowered blood pressure in genetic hypertensive rats via inhibition of RhoA/Rho kinase expression and activity in the vivo study. TRPM8 effect was associated with inhibition of intracellular calcium release from the sarcoplasmic reticulum, RhoA/Rho kinase activity, and sustained arterial contraction in the vitro study. Importantly, 8-week chronic menthol capsule treatment moderately lowered systolic blood pressure and diastolic blood pressure in prehypertensive individuals compared with the placebo group. Furthermore, chronic menthol capsule administration also improved flow-mediated dilatation in prehypertensive individuals, but not in the placebo group. In conclusion, our study demonstrates that TRPM8 activation by menthol benefits vascular function and blood pressure by inhibiting calcium signaling-mediated RhoA/Rho kinase activation in the vasculature. These findings add to the evidence that long-term dietary menthol treatment had favorable effects on hypertension treatment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|