1
|
Zhou Q, Hu T, Xu Y. Anticancer potential of TUG1 knockdown in cisplatin-resistant osteosarcoma through inhibition of MET/Akt signalling. J Drug Target 2019; 28:204-211. [PMID: 31305159 DOI: 10.1080/1061186x.2019.1644651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Development of cisplatin (DDP)-resistance is a major challenge that largely limits the efficacy of chemotherapy for osteosarcoma. LncRNA Taurine up-regulated gene 1 (TUG1) is a recently identified oncogenic lncRNA that has been involved in chemo-resistance of various cancers. In this study, over-expression of TUG1 was found in two osteosarcoma cell lines resistant to DDP (Saos-2/DDP, MG-63/DDP). Knockdown of TUG1 inhibited the DDP-resistance and promoted the cytotoxicity and apoptosis induced by DDP in Saos-2/DDP and MG-63/DDP cells. TUG1 knockdown also markedly inhibited the expression level of MET and p-Akt. In conclusion, knockdown of TUG1 suppressed cell growth and increased apoptotic rate under DDP treatment possibly via regulating MET/Akt signalling pathway.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Traditional Chinese Medicine, Ningbo Mingzhou Hospital, Ningbo, People's Republic of China
| | - Tongzhou Hu
- Department of Orthopedics, Ningbo Fourth Hospital, Ningbo, People's Republic of China
| | - Yuan Xu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Kina S, Kinjo T, Liang F, Nakasone T, Yamamoto H, Arasaki A. Targeting EphA4 abrogates intrinsic resistance to chemotherapy in well-differentiated cervical cancer cell line. Eur J Pharmacol 2018; 840:70-78. [DOI: 10.1016/j.ejphar.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 01/12/2023]
|
3
|
Okuno SH, Maran A, Robinson SI. Olaratumab for the treatment of advanced soft tissue sarcoma. Expert Rev Anticancer Ther 2017; 17:883-887. [PMID: 28862476 DOI: 10.1080/14737140.2017.1374857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Olaratumab, a human monoclonal antibody against platelet derived growth factor receptor alpha (PDGFR- α), is the first drug that in combination with doxorubicin for the treatment of patients with advanced/metastatic soft tissue sarcoma (STS) that has showed an improved overall survival compared to doxorubicin alone. These initial results are exciting and have the potential to change the landscape of treatment for patients with STS. Areas covered: This article reviews the development of olaratumab for oncology use by reviewing articles in PubMed for 'platelet derived growth factor' and 'receptor' and 'soft tissue sarcoma'. We provide an overview of the published studies to date for olaratumab and specifically the use in soft tissue sarcoma. Expert commentary: Olaratumab is a well-tolerated drug that, when combined with doxorubicin, has shown an improved overall survival compared to doxorubicin alone and the phase III confirmatory study is eagerly awaited.
Collapse
Affiliation(s)
- Scott H Okuno
- a Department of Oncology , Mayo Clinic , Rochester , MN USA
| | - Avudaiappan Maran
- b Biomedical Engineering and Orthopedics , Mayo Clinic , Rochester , MN USA
| | | |
Collapse
|
4
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 DOI: 10.4137/togog.s30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 PMCID: PMC4659440 DOI: 10.4137/tog.s30534] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
D'Alessandro R, Messa C, Refolo MG, Carr BI. Modulation of sensitivity and resistance to multikinase inhibitors by microenvironmental platelet factors in HCC. Expert Opin Pharmacother 2015; 16:2773-80. [PMID: 26479083 DOI: 10.1517/14656566.2015.1101065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Response of a tumor to chemotherapy or multikinase inhibitor therapy has been traditionally thought to be a reflection of the sum of the characteristics of both the drug and of the tumor cell resistance mechanisms. More recently, there has been a growing awareness of the role of non-tumor factors-both cellular and humoral-in the tumor microenvironment that can increase or decrease the tumor cellular responses to the therapy. This article focuses on platelet factors in clinical HCC and experimental evidence that they provide growth stimulants that can antagonize the growth inhibitory effects of therapy. AREAS COVERED Review of the mechanisms of multikinase cancer growth inhibitors and of the role of platelets in providing growth factors that can antagonize their effects. EXPERT OPINION These new ideas and data show that the response of a tumor to multikinase inhibitors or chemotherapy may be strongly influenced by microenvironmental factors. Conversely, antagonists to these environmental factors, such as EGFR inhibitors and IGF1-R inhibitors, might be expected to augment the anti-tumor effect of both chemotherapy and multikinase inhibitors.
Collapse
Affiliation(s)
- Rosalba D'Alessandro
- a Laboratory of Cellular Biology, National Institute for Digestive Diseases , IRCCS "Saverio de Bellis" , Via Turi 27, Castellana Grotte , BA 70013 , Italy
| | - Caterina Messa
- a Laboratory of Cellular Biology, National Institute for Digestive Diseases , IRCCS "Saverio de Bellis" , Via Turi 27, Castellana Grotte , BA 70013 , Italy
| | - Maria Grazia Refolo
- a Laboratory of Cellular Biology, National Institute for Digestive Diseases , IRCCS "Saverio de Bellis" , Via Turi 27, Castellana Grotte , BA 70013 , Italy
| | - Brian I Carr
- a Laboratory of Cellular Biology, National Institute for Digestive Diseases , IRCCS "Saverio de Bellis" , Via Turi 27, Castellana Grotte , BA 70013 , Italy.,b Visiting Professor, Program for Targeted Experimental Therapeutics, Izmir Biomedicine and Genome Center , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
7
|
Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. MET/HGF targeted drugs as potential therapeutic strategies in non-small cell lung cancer. Pharmacol Res 2015; 102:90-106. [PMID: 26413995 DOI: 10.1016/j.phrs.2015.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas 2, Granada, Spain; Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas 2, Granada, Spain.
| | - Miguel Ángel Molina
- Pangaea Biotech, S.L., Hospital Universitario Quirón Dexeus, C/Sabino Arana, 5-19, 08028 Barcelona, Spain.
| | - María José Faus-Dáder
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas 2, Granada, Spain; Department of Pharmacology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| |
Collapse
|
8
|
Modulation of Regorafenib effects on HCC cell lines by epidermal growth factor. Cancer Chemother Pharmacol 2015; 75:1237-1245. [PMID: 25907508 DOI: 10.1007/s00280-015-2751-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Blood platelet numbers are correlated to growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) also stimulated growth and migration, and antagonized the growth-inhibitory and apoptotic effects of both Sorafenib and Regorafenib, two multikinase inhibitors, on three HCC cell lines. In this study, in vitro function of human epidermal growth factor (EGF) with and without Sorafenib or Regorafenib was investigated. METHODS An ELISA kit was used to evaluate the EGF concentrations in hPLs. In vitro function of EGF was assessed with proliferation MTT test. Apoptosis assay, scratch assays, and Transwell assays were performed for apoptosis, invasion, and migration, respectively. MAPK Activation Kit was used to explore MAPK phosphorylation. RESULTS EGF antagonized the growth inhibition of Regorafenib on three HCC cell lines. Regorafenib-mediated growth inhibition was blocked by 70 % when the cells were pre-treated with EGF. EGF also blocked Regorafenib-induced apoptosis, as well as Regorafenib-induced decreases in cell migration and invasion. The EGF effects were in turn antagonized by concomitant addition to the cultures of EGF receptor antagonist Erlotinib, showing that the EGF receptor was involved in the mechanisms of EGF-mediated blocking of Regorafenib effects. Erlotinib also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that EGF was an important component of hPL actions. CONCLUSIONS All these results show that EGF antagonized Regorafenib-mediated growth and migration inhibition and apoptosis induction in HCC cells and reinforce the idea that microenvironment can influence cancer drug actions.
Collapse
|
9
|
D'Alessandro R, Refolo MG, Lippolis C, Giannuzzi G, Carella N, Messa C, Cavallini A, Carr BI. Antagonism of sorafenib and regorafenib actions by platelet factors in hepatocellular carcinoma cell lines. BMC Cancer 2014; 14:351. [PMID: 24885890 PMCID: PMC4038078 DOI: 10.1186/1471-2407-14-351] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/19/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Platelets are frequently altered in hepatocellular carcinoma (HCC) patients. Platelet lysates (hPL) can enhance HCC cell growth and decrease apoptosis. The aims were to evaluate whether hPL can modulate the actions of sorafenib or regorafenib, two clinical HCC multikinase antagonists. METHODS Several human HCC cell lines were grown in the presence and absence of sorafenib or regorafenib, with or without hPL. Growth was measured by MTT assay, apoptosis was assessed by Annexin V and by western blot, and autophagy and MAPK growth signaling were also measured by western blot, and migration and invasion were measured by standard in vitro assays. RESULTS Both sorafenib and regorafenib-mediated inhibition of cell growth, migration and invasion were all antagonized by hPL. Drug-mediated apoptosis and decrease in phospho-ERK levels were both blocked by hPL, which also increased anti-apoptotic phospho-STAT, Bax and Bcl-xL levels. Preliminary data, obtained with epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I), included in hPL, revealed that these factors were able to antagonized sorafenib in a proliferation assay, in particular when used in combination. CONCLUSIONS Platelet factors can antagonize sorafenib or regorafenib-mediated growth inhibition and apoptosis in HCC cells. The modulation of platelet activity or numbers has the potential to enhance multikinase drug actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian I Carr
- Laboratory of Biochemistry, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
10
|
Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2013; 142:316-38. [PMID: 24384534 DOI: 10.1016/j.pharmthera.2013.12.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
The Met receptor tyrosine kinase (RTK) is an attractive oncology therapeutic target. Met and its ligand, HGF, play a central role in signaling pathways that are exploited during the oncogenic process, including regulation of cell proliferation, invasion, angiogenesis, and cancer stem cell regulation. Elevated Met and HGF as well as numerous Met genetic alterations have been reported in human cancers and correlate with poor outcome. Alterations of pathways that regulate Met, such as the ubiquitin ligase c-Cbl are also likely to activate Met in the oncogenic setting. Moreover, interactive crosstalk between Met and other receptors such as EGFR, HER2 and VEGFR, underlies a key role for Met in resistance to other RTK-targeted therapies. A large body of preclinical and clinical data exists that supports the use of either antibodies or small molecule inhibitors that target Met or HGF as oncology therapeutics. The prognostic potential of Met expression has been suggested from studies in numerous cancers including lung, renal, liver, head and neck, stomach, and breast. Clinical trials using Met inhibitors indicate that the level of Met expression is a determinant of trial outcome, a finding that is actively under investigation in multiple clinical scenarios. Research in Met prognostics and predictors of drug response is now shifting toward more sophisticated methodologies suitable for development as validated and effective biomarkers that can be partnered with therapeutics to improve patient survival.
Collapse
Affiliation(s)
- Christiane R Maroun
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada.
| | - Tracey Rowlands
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada
| |
Collapse
|