1
|
Li B, Yuan H, Chen L, Sun H, Hu J, Wei S, Zhao Z, Zou Q, Wu C. The influence of adjuvant on UreB protection against Helicobacter pylori through the diversity of CD4+ T-cell epitope repertoire. Oncotarget 2017; 8:68138-68152. [PMID: 28978104 PMCID: PMC5620244 DOI: 10.18632/oncotarget.19248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Adjuvants are widely used to enhance the effects of vaccines against pathogen infections. Interestingly, different adjuvants and vaccination routes usually induce dissimilar immune responses, and can even have completely opposite effects. The mechanism remains unclear. In this study, urease B subunit (UreB), an antigen of Helicobacter pylori (H. pylori) that can induce protective immune responses, was used as a model to vaccinate mice. We investigated the effects of different adjuvants and routes on consequent T cell epitope-specific targeting and protection against H. pylori infection. Comparison of the protective effects of UreB, administered either subcutaneously (sc) or intranasally (in), with the adjuvants AddaVax (sc), Complete Freund’s adjuvant (CFA; sc), or CpG oligonucleotide (CpG; sc or in), indicated that only CFA (sc) and CpG (in) were protective. Protective vaccines induced T cells targeting epitopes that differed from that targeted by control vaccination. Subsequent peptide vaccination demonstrated that only two of the identified epitopes were protective: UreB373–385 and UreB317–329. Overall, we found that both adjuvant and vaccination route affected the T cell response repertoire to antigen epitopes. The data obtained in this study contribute to improved characterization of the relationship between adjuvants, routes of vaccination, and epitope-specific T cell response repertoires.
Collapse
Affiliation(s)
- Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Li Chen
- Department of Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jian Hu
- Department of Intensive Care Unit, Chengdu Military General Hospital, Chengdu, PR China.,Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shanshan Wei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|