1
|
Li G, Lu C, Yin M, Wang P, Zhang P, Wu J, Wang W, Wang D, Wang M, Liu J, Lin X, Zhang JX, Wang Z, Yu Y, Zhang YF. Neural substrates for regulating self-grooming behavior in rodents. J Zhejiang Univ Sci B 2024; 25:841-856. [PMID: 39420521 PMCID: PMC11494162 DOI: 10.1631/jzus.b2300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 07/13/2024]
Abstract
Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.
Collapse
Affiliation(s)
- Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Chanyi Lu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miaomiao Yin
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100101, China
| | - Pengbo Zhang
- Department of Gastrointestinal Surgery, the People's Hospital of Zhaoyuan City, Zhaoyuan 265400, China
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ding Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mengyue Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xinghan Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenshan Wang
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
- Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China. ,
| | - Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ,
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China. ,
| |
Collapse
|
2
|
Endogenous cannabinoids are required for MC4R-mediated control of energy homeostasis. Proc Natl Acad Sci U S A 2021; 118:2015990118. [PMID: 34654741 DOI: 10.1073/pnas.2015990118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.
Collapse
|
3
|
Hannapel RC, Henderson YH, Nalloor R, Vazdarjanova A, Parent MB. Ventral hippocampal neurons inhibit postprandial energy intake. Hippocampus 2017; 27:274-284. [PMID: 28121049 DOI: 10.1002/hipo.22692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Evidence suggests that the memory of a recently ingested meal limits subsequent intake. Given that ventral hippocampal (vHC) neurons are involved in memory and energy intake, the present experiment tested the hypothesis that vHC neurons contribute to the formation of a memory of a meal and inhibit energy intake during the postprandial period. We tested (1) whether pharmacological inactivation of vHC neurons during the period following a sucrose meal, when the memory of the meal would be undergoing consolidation, accelerates the onset of the next sucrose meal and increases intake and (2) whether sucrose intake increases vHC expression of the synaptic plasticity marker activity-regulated cytoskeletal-associated protein (Arc). Adult male Sprague-Dawley rats were trained to consume a 32% sucrose solution daily at the same time and location. On the experimental day, the rats were given intra-vHC infusions of the GABAA receptor agonist muscimol or vehicle after they finished their first sucrose meal. Compared to vehicle infusions, postmeal intra-vHC muscimol infusions decreased the latency to the next sucrose meal, increased the amount of sucrose consumed during that meal, increased the total number of sucrose meals and the total amount of sucrose ingested. In addition, rats that consumed sucrose had higher levels of Arc expression in both vHC CA1 and CA3 subfields than cage control rats. Collectively, these findings are the first to show that vHC neurons inhibit energy intake during the postprandial period and support the hypothesis that vHC neurons form a memory of a meal and inhibit subsequent intake. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Yoko H Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Rebecca Nalloor
- Neuroscience Institute, Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, 1120 15th Street, CB 3526, Augusta, Georgia.,VA Research Service, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, Georgia
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia.,Department of Psychology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
4
|
Almundarij TI, Smyers ME, Spriggs A, Heemstra LA, Beltz L, Dyne E, Ridenour C, Novak CM. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats. Sci Rep 2016; 6:37435. [PMID: 27886210 PMCID: PMC5122857 DOI: 10.1038/srep37435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/28/2016] [Indexed: 01/28/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.
Collapse
Affiliation(s)
- Tariq I Almundarij
- College of Agriculture and Veterinary Medicine, Al-Qassim University, Buraydah, Al-Qassim Province, Saudi Arabia.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| | - Addison Spriggs
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lisa Beltz
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, US
| | - Caitlyn Ridenour
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US.,School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| |
Collapse
|
5
|
Breton J, Tennoune N, Lucas N, Francois M, Legrand R, Jacquemot J, Goichon A, Guérin C, Peltier J, Pestel-Caron M, Chan P, Vaudry D, do Rego JC, Liénard F, Pénicaud L, Fioramonti X, Ebenezer IS, Hökfelt T, Déchelotte P, Fetissov SO. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metab 2016; 23:324-34. [PMID: 26621107 DOI: 10.1016/j.cmet.2015.10.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023]
Abstract
The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern.
Collapse
Affiliation(s)
- Jonathan Breton
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Naouel Tennoune
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Nicolas Lucas
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Marie Francois
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Romain Legrand
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Justine Jacquemot
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Alexis Goichon
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Charlène Guérin
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Johann Peltier
- Microbiology Laboratory GRAM, EA2656, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Martine Pestel-Caron
- Microbiology Laboratory GRAM, EA2656, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France; Rouen University Hospital, CHU Charles Nicolle, Rouen 76183, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Mont-Saint-Aignan 76821, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - David Vaudry
- PISSARO Proteomic Platform, Mont-Saint-Aignan 76821, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Jean-Claude do Rego
- Animal Behavior Platform (SCAC), Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France
| | - Fabienne Liénard
- Centre for Taste and Feeding Behaviour, UMR 6265-CNRS, 1324-INRA, Bourgogne Franche Comté University, Dijon F 21000, France
| | - Luc Pénicaud
- Centre for Taste and Feeding Behaviour, UMR 6265-CNRS, 1324-INRA, Bourgogne Franche Comté University, Dijon F 21000, France
| | - Xavier Fioramonti
- Centre for Taste and Feeding Behaviour, UMR 6265-CNRS, 1324-INRA, Bourgogne Franche Comté University, Dijon F 21000, France
| | - Ivor S Ebenezer
- Neuropharmacology Research Group, School of Pharmacy and Biomedical Sciences University of Portsmouth, Portsmouth PO 1 2DT, UK
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Pierre Déchelotte
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France; Rouen University Hospital, CHU Charles Nicolle, Rouen 76183, France
| | - Sergueï O Fetissov
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, Rouen 76000, France.
| |
Collapse
|
6
|
Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, Begg DP, Krawczewski Carhuatanta KA, Haas MK, Davis JF, Woods SC, Sandoval DA, Seeley RJ, Goodyear LJ, Pothos EN, Mul JD. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab 2015; 4:692-705. [PMID: 26500841 PMCID: PMC4588435 DOI: 10.1016/j.molmet.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training. MC4R-deficiency causes metabolic syndrome. Loss of MC4R signaling decreases voluntary wheel running (VWR). Despite moderate amounts of VWR, MC4R-associated metabolic syndrome is severely attenuated. MC4R-deficiency is associated with mesolimbic dopamine dysregulation during VWR.
Collapse
Affiliation(s)
- Silvana Obici
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - I Jack Magrisso
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Armen S Ghazarian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alireza Shirazian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jonas R Miller
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christine M Loyd
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | | | - Michael K Haas
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jon F Davis
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Darleen A Sandoval
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Emmanuel N Pothos
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Peters SM, Pothuizen HHJ, Spruijt BM. Ethological concepts enhance the translational value of animal models. Eur J Pharmacol 2015; 759:42-50. [PMID: 25823814 DOI: 10.1016/j.ejphar.2015.03.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
Abstract
The translational value of animal models is an issue of ongoing discussion. We argue that 'Refinement' of animal experiments is needed and this can be achieved by exploiting an ethological approach when setting up and conducting experiments. Ethology aims to assess the functional meaning of behavioral changes, due to experimental manipulation or treatment, in animal models. Although the use of ethological concepts is particularly important for studies involving the measurement of animal behavior (as is the case for most studies on neuro-psychiatric conditions), it will also substantially benefit other disciplines, such as those investigating the immune system or inflammatory response. Using an ethological approach also involves using more optimal testing conditions are employed that have a biological relevance to the animal. Moreover, using a more biological relevant analysis of the data will help to clarify the functional meaning of the modeled readout (e.g. whether it is psychopathological or adaptive in nature). We advocate for instance that more behavioral studies should use animals in group-housed conditions, including the recording of their ultrasonic vocalizations, because (1) social behavior is an essential feature of animal models for human 'social' psychopathologies, such as autism and schizophrenia, and (2) social conditions are indispensable conditions for appropriate behavioral studies in social species, such as the rat. Only when taking these elements into account, the validity of animal experiments and, thus, the translation value of animal models can be enhanced.
Collapse
Affiliation(s)
- Suzanne M Peters
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands; Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands.
| | - Helen H J Pothuizen
- Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands
| | - Berry M Spruijt
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
8
|
Lira LA, Almeida LC, Silva AA, Cavalcante TC, Melo DD, Souza JA, Campina RC, Souza SL. Perinatal undernutrition increases meal size and neuronal activation of the nucleus of the solitary tract in response to feeding stimulation in adult rats. Int J Dev Neurosci 2014; 38:23-9. [DOI: 10.1016/j.ijdevneu.2014.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/27/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lívia A. Lira
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
| | - Larissa C.A. Almeida
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
| | - Amanda A.M. Silva
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
| | | | - Diogo D.C.B. Melo
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
| | - Julliet A. Souza
- Department of NutritionUniversidade Federal de Pernambuco – UFPERecifePEBrazil
| | - Renata C.F. Campina
- Department of AnatomyUniversidade Federal de Pernambuco – UFPERecifePEBrazil
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
| | - Sandra L. Souza
- Department of AnatomyUniversidade Federal de Pernambuco – UFPERecifePEBrazil
- Postgraduate Neuropsychiatry and Behavioral SciencesUniversidade Federal Pernambuco – UFPERecifePEBrazil
- Department of NutritionUniversidade Federal de Pernambuco – UFPERecifePEBrazil
| |
Collapse
|
9
|
Reproducibility and relevance of future behavioral sciences should benefit from a cross fertilization of past recommendations and today's technology: "Back to the future". J Neurosci Methods 2014; 234:2-12. [PMID: 24632384 DOI: 10.1016/j.jneumeth.2014.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
Thanks to the discovery of novel technologies and sophisticated analysis tools we can now 'see' molecules, genes and even patterns of gene expression, which have resulted in major advances in many areas of biology. Recently, similar technologies have been developed for behavioral studies. However, the wide implementation of such technological progress in behavioral research remains behind, as if there are inhibiting factors for accepting and adopting available innovations. The methods of the majority of studies measuring and interpreting behavior of laboratory animals seem to have frozen in time somewhere in the last century. As an example of the so-called classical tests, we will present the history and shortcomings of one of the most frequently used tests, the open field. Similar objections and critical remarks, however, can be made with regard to the elevated plus maze, light-dark box, various other mazes, object recognition tests, etc. Possible solutions and recommendations on how progress in behavioral neuroscience can be achieved and accelerated will be discussed in the second part of this review.
Collapse
|