1
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
2
|
Anabolic Effects of a Novel Simvastatin Derivative on Treating Rat Bone Defects. Biomedicines 2022; 10:biomedicines10081915. [PMID: 36009462 PMCID: PMC9405916 DOI: 10.3390/biomedicines10081915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Large bone defects may develop fracture nonunion, leading to disability and psychosocial burdens. Bone grafting with anabolic agents is a good autografting alternative. Simvastatin, as a cholesterol-lowering agent worldwide, is proven to enhance osteogenesis. Considering its dose-dependent adverse effects, we developed a simvastatin derivative, named KMUHC-01, which has bone anabolic capacity and lower cytotoxicity than simvastatin. We hypothesize that KMUHC-01 could help bone formation in bone-defect animal models. We used rat models of critical calvarial and long-bone defects to evaluate the effects of KMUHC-01 and simvastatin on biological changes at the bone defect through histology, immunohistology, and mechanical testing using three-point bending and evaluated the new bone formation microstructure through microcomputed tomography analysis. The newly formed bone microstructure at the calvarial defect site showed a significantly improved trabecular bone volume in the KMUHC-01 1-μM group compared with that in the control and simvastatin groups. The biomechanical study revealed a significantly increased maximal strength in the KMUHC-01 1-μM group compared with that in the control group. KUMHC-01, as a simvastatin derivative, showed a great anabolic effect in promoting bone defect healing. However, further studies will be conducted to prove the bioavailability and bone-forming efficacy of KMUHC-01 via systemic administration.
Collapse
|
3
|
Zarrin NK, Mottaghitalab F, Reis RL, Kundu SC, Farokhi M. Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. Int J Biol Macromol 2022; 213:352-368. [PMID: 35640849 DOI: 10.1016/j.ijbiomac.2022.05.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Thermosensitive nanoparticles with phase transition abilities have been considered as suitable materials in biomedical fields, especially drug delivery systems. Moreover, electroactive injectable hydrogels supporting bone regeneration of the elderly will highly be desired in bone tissue engineering applications. Herein, thermosensitive nanoparticles were fabricated using chitosan/poly(N-isopropyl acrylamide) for simvastatin acid delivery. The nanoparticles were incorporated into electroactive injectable hydrogels based on aniline pentamer/silk fibroin/polyacrylamide containing vitamin C. The nanoparticles had thermosensitive properties as simvastatin acid had higher release rates at 37 than 23 °C without significant burst release. The hydrogels also revealed an appropriate gelation time, stable mechanical and rheological characteristics, high water absorbency, and proper biodegradability. In vitro studies indicated that the hydrogel was biocompatible and nontoxic, especially those containing drugs. Implantation of the hydrogels containing both simvastatin acid and vitamin C into the critical calvarial bone defect of the aged rat also demonstrated significant enhancement of bone healing after 4 and 8 weeks post-implantation. We found that the electroactive injectable hydrogels containing thermosensitive nanoparticles exhibited great potential for treating bone defects in the elderly rats.
Collapse
Affiliation(s)
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetic, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4805-017 Barco, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetic, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4805-017 Barco, Guimaraes, Portugal
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Niazi SA, Bakhsh A. Association between Endodontic Infection, Its Treatment and Systemic Health: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:931. [PMID: 35888650 PMCID: PMC9319780 DOI: 10.3390/medicina58070931] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
The 'Focal Infection Era in Dentistry' in the late 19th and early 20th century resulted in widespread implementation of tooth extraction and limited the progress of endodontics. The theory proposed that bacteria and toxins entrapped in dentinal tubules could disseminate systemically to remote body parts, resulting in many types of degenerative systemic diseases. This theory was eventually refuted due to anecdotal evidence. However, lately there has been increased interest in investigating whether endodontic disease could have an impact on general health. There are reviews that have previously been carried out on this subject, but as new data have emerged since then, this review aims to appraise the available literature investigating the dynamic associations between apical periodontitis, endodontic treatment, and systemic health. The available evidence regarding focal infection theory, bacteraemia and inflammatory markers was appraised. The review also collated the available research arguing the associations of apical periodontitis with cardiovascular diseases, diabetes mellitus, adverse pregnancy outcome and autoimmune disorders, along with the effect of statins and immunomodulators on apical periodontitis prevalence and endodontic treatment prognosis. There is emerging evidence that bacteraemia and low-grade systemic inflammation associated with apical periodontitis may negatively impact systemic health, e.g., development of cardiovascular diseases, adverse pregnancy outcomes, and diabetic metabolic dyscontrol. However, there is limited information supporting the effect of diabetes mellitus or autoimmune disorders on the prevalence and prognosis post endodontic treatment. Furthermore, convincing evidence supports that successful root canal treatment has a beneficial impact on systemic health by reducing the inflammatory burden, thereby dismissing the misconceptions of focal infection theory. Although compelling evidence regarding the association between apical periodontitis and systemic health is present, further high-quality research is required to support and establish the benefits of endodontic treatment on systemic health.
Collapse
Affiliation(s)
- Sadia Ambreen Niazi
- Department of Endodontics, Centre of Oral Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Dental Hospital, King’s College London, London SE1 9RT, UK
| | - Abdulaziz Bakhsh
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| |
Collapse
|
5
|
Sabandal MMI, Schäfer E, Petsching S, Jung S, Kleinheinz J, Sielker S. Pleiotropic effects on proliferation and mineralization of primary human adipose tissue-derived stromal cells induced by simvastatin. Open Biol 2022; 12:210337. [PMID: 35673853 PMCID: PMC9174717 DOI: 10.1098/rsob.210337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The circulating low-density lipoprotein concentration in blood can be reduced by the administration of statins. Frequently simvastatin (SV) is prescribed. Due to the reported pleiotropic effects of SV the aim of this study was to evaluate mineralization effects on human adipose tissue-derived stromal cells upon administration of SV. After informed consent human adipose tissue-derived stromal cells were obtained from tissue surplus of regular treatments of 14 individuals. According to established protocols after adding various SV concentrations (0.01 µM, 0.1 µM, 1.0 µM, 2.0 µM), alkaline phosphate (osteoblastic marker), mineralization capability and viability were determined at day 18, 21 and 28. The Kruskal-Wallis test was performed for statistical analysis. After adding SV a dose-dependent significant decreased viability and levels of alkaline phosphatase (p < 0.01) and a significantly increased mineralization (p < 0.01) of the primary cultures was recognized during the late mineralization stage. Mineralization of the human adipose tissue-derived stromal cells was induced by SV, possibly originated from alternative pathways than the alkaline phosphatase pathway. Further investigations should be performed regarding switching into the osteoblastic differentiation and as a possible source of cells that can be used as the basis for a potential bone graft substitute, which may allow an extension of the field of application.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Simon Petsching
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
6
|
El-dien AMS, Fathy S, El-din YA. Potential Bone Regenerative Effects of DFDBA, Simvastatin and Platelet Rich Fibrin, Radiographically and Histologically of Intra-Bony Periodontal Defects in White New Zealand Rabbits. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study aimed to evaluate and to compare the regenerative power of simvastatin, Demineralized Freeze-Dried Bone Allograft (DFDBA) allograft, platelets rich Fibrin (PRF), and a combination of these materials radiographically and histologically in the intra-bony periodontal defects in white New Zealand rabbits.
MATERIALS AND METHODS: This study was conducted on 54 defects in 27 adult male rabbits (n = 27) which were divided into three groups according to the follow-up preplanned scheduled for 1, 2, and 3 weeks. The selected materials were induced as following: A=DFDBA, B=Simvastatin, C= PRF, D=A+C, E=B+C, and F=negative (control group). The intra-bony periodontal defects were induced as the form of one osseous wall defect of 10 mm height, 4 mm depth between the first and the second molars. Then, samples were prepared for histological evaluation. Radiographic assessment was done using computed tomography radiography which was carried at different time intervals as the following baseline, 1, 2, and 3 weeks later. Statistical analysis was performed using ANOVA.
RESULTS: After evaluating the results, macroanatomy, radiographically, and histologically, it is thus confirmed that DFDBA allograft combined with PRF create the best bone regenerative results, followed by DFDBA, Simvastatin, simvastatin+ PRF, control group, and finally PRF.
CONCLUSION: All of the materials examined in this study showed different percentage in terms of bone density and bone regenerative effects. However, the best results for bone density of the DFDBA + PRF group were recorded after 3 weeks. Thus, the study concludes that a combination of DFDBA + PRF reflects the best properties of both materials in terms of bone density results of the defect. Such results are particularly significant for the selection of bone regeneration materials, and generally, for periodontal regeneration.
Collapse
|
7
|
Huang C, Liang D, Huang C, Li B, He J, Huang X. The protective effects of simvastatin in Cadmium-Induced preosteoblast injury through Nox4. J Recept Signal Transduct Res 2020; 42:117-124. [PMID: 33349105 DOI: 10.1080/10799893.2020.1859533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cadmium (Cd) has a direct toxic effect on bones. Statins such as simvastatin have protective effects on various diseases, including on tissue injury. The current study revealed the efficacy of simvastatin on Cd-induced preosteoblast injury. Preosteoblast MC3T3-E1 cells were incubated with various doses of CdCl2 for 12 h, 24 h and 48 h, and then the cell cytotoxicity was assessed using MTT assay and flow cytometry, respectively. The expression level of Nox4 was assessed by Western blot and qRT-PCR. The morphological appearance of MC3T3-E1 cells was observed under a microscope. Cells exposed to CdCl2 (5 µM) were further treated by simvastatin at various doses, subsequently cell viability, apoptosis and the expression of Nox4 were measured. Furthermore, to confirm the protective effects of simvastatin on Cd-induced pre-osteoblast injury, functional rescue assays were performed after corresponding cell treatment by simvastatin (10-8 M), CdCl2 (5 µM), and overexpression of Nox4. Expressions of cell apoptosis-related markers were measured by Western blot and qRT-PCR. The results revealed that CdCl2 caused MC3T3-E1 cell injury because the cell viability was decreased and the apoptosis was increased. Nox4 expression was up-regulated with the increase of CdCl2 concentrations. Simvastatin increased the cell viability, relieved the cell apoptosis and Nox4 expression previously increased by CdCl2. The effects of CdCl2 on MC3T3-E1 cells and Nox4 expression could be attenuated by simvastatin, and promoted by Nox4 overexpression. The current study found that simvastatin protects Cd-induced preosteoblast injury via Nox4, thus, it can be used as a potential drug for treating cadmium-induced bone injury.
Collapse
Affiliation(s)
- Chongxia Huang
- Department of Rehabilitation, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Du Liang
- Department of Orthopedics and Arthrolog, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Chongbo Huang
- Department of Orthopedic Surgery, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Baolin Li
- Department of Orthopedic Surgery, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Jiandong He
- Department of Orthopedics and Arthrolog, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Ximou Huang
- Department of Orthopedics and Traumatology, Guangzhou Yuexiu District Orthopedics and Traumatology Rehabilitation, Guangzhou, China
| |
Collapse
|
8
|
Sabandal MMI, Schäfer E, Imper J, Jung S, Kleinheinz J, Sielker S. Simvastatin Induces In Vitro Mineralization Effects of Primary Human Odontoblast-Like Cells. MATERIALS 2020; 13:ma13204679. [PMID: 33092304 PMCID: PMC7588985 DOI: 10.3390/ma13204679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022]
Abstract
Simvastatin (SV) is an often prescribed statin reducing the LDL-concentration in circulating blood. The aim of this study was to evaluate the pleiotropic effects of SV to primary human odontoblast-like cells. Twenty four wisdom teeth of different subjects were extracted and the pulp tissue was removed and minced under sterile conditions. After mincing, the requested cells were passaged according to established protocols. Osteoblastic marker (ALP conversion), viability and mineralization were determined at days 14, 17 and 21 after simvastatin exposition (0.01 µM, 0.1 µM, 1.0 µM, 2.0 µM). The sample size per group was 24 cultures with three replicates per culture for ALP-conversion and mineralization and 6 replicates for viability. A Kruskal–Wallis test was used for statistical analysis. After adding SV, viability was significantly (p < 0.01) decreased in a time- and dose-dependent manner, whereas after 21 days, mineralization was significant (p < 0.01). ALP-conversion in groups with SV concentrations of 1 and 2 µM SV was significantly (p < 0.01) increased. Pleiotropic effects regarding mineralization in higher SV concentrations were possibly induced via alternative mineralization pathways as almost equal elevations of ALP conversion were not evident in the control and experimental groups.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
- Correspondence: ; Tel.: +49-251-843-712
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
| | - Jessica Imper
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| |
Collapse
|
9
|
Sabandal MMI, Schäfer E, Aed J, Jung S, Kleinheinz J, Sielker S. Simvastatin induces adverse effects on proliferation and mineralization of human primary osteoblasts. Head Face Med 2020; 16:18. [PMID: 32819403 PMCID: PMC7439668 DOI: 10.1186/s13005-020-00232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Frequently statins were administered to reduce the LDL-concentration in circulating blood. Especially simvastatin (SV) is an often prescribed statin. Pleiotropic effects of these drugs were reported. Thus, the aim of this study was to evaluate effects of SV on osteoblastic mineralization. Methods After informed consent primary osteoblasts were collected from tissue surplus after treatment of 14 individuals in the Department of Cranio-Maxillofacial Surgery, University Hospital Münster. The cells were passaged according to established protocols. Viability, mineralization capability and osteoblastic marker (alkaline phosphatase) were determined at day 9, 13 and 16 after adding various SV concentrations (0.05 μM, 0.1 μM, 0.5 μM, 1.0 μM). Statistical analysis was performed using the Kruskal-Wallis-test. Results The cell cultures showed a time and dose-dependent significantly decreased viability (p < 0.01) and a significantly increased mineralization (p < 0.01) in a late mineralization stage after adding SV. The typical alteration of the alkaline phosphatase (ALP) levels during osteogenic differentiation was not recognizable. Conclusions The pleiotropic effects found for different SV concentrations were possibly originated from other mineralization pathways beside the ALP induced one. Additionally, possible alterations of protein expression levels during mineralization and investigation of possible deviating application of SV in other treatment fields can be considered after gaining a deeper insight in the affected mechanisms.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany.
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany
| | - Jonathan Aed
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany.,Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
10
|
Yang C, Kok S, Wang H, Chang JZ, Lai EH, Shun C, Yang H, Chen M, Hong C, Lin S. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy‐related osteoblast apoptosis. Int Endod J 2018; 52:676-688. [DOI: 10.1111/iej.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- C.‐N. Yang
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
| | - S.‐H. Kok
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - H.‐W. Wang
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - J. Z.‐C. Chang
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - E. H.‐H. Lai
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - C.‐T. Shun
- Department of Forensic Medicine and Pathology National Taiwan University Hospital Taipei Taiwan
| | - H. Yang
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - M.‐H. Chen
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - C.‐Y. Hong
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
- Department of Prosthodontics School of Dentistry China Medical University Taichung Taiwan
- College of Bio‐Resources and Agriculture National Taiwan University Taipei Taiwan
| | - S.‐K. Lin
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
11
|
Yuan X, Zhang M, Wang Y, Zhao H, Sun D. Using co-axial electrospray deposition to eliminate burst release of simvastatin from microparticles and to enhance induced osteogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 30:355-375. [PMID: 30572791 DOI: 10.1080/09205063.2018.1559978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microparticles (MPs) exhibit fast dissolution, characterized by a burst drug release pattern. In the present work, we prepared core-shell MPs of simvastatin (SIM) and zein with chitosan (CS) and nano-hydroxyapatite (nHA) as a drug carrier using the coaxial electrospray deposition method. The morphology, formation and in vitro osteogenic differentiation of these MPs were studied. The synthetic MPs have a diameter of about 1 μm and they are composed of non-toxic natural materials. They provide an effective way to enable long-term sustained-release activity, which is controlled by their double layer structures. The CS-nHA/zein-SIM MPs presented a low initial burst release (approximately 35-47%) within the first 24 h of application followed by the sustained release for at least 4 weeks. In vitro cell culture experiments were performed and the results revealed that the CS-nHA/zein-SIM core-shell MPs were beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The CS-nHA/zein-SIM MPs with a low SIM concentration were beneficial to cell proliferation and promotion of osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaowei Yuan
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| | - Mei Zhang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Yilong Wang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - He Zhao
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Dahui Sun
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| |
Collapse
|
12
|
Lipophilic statins inhibit growth and reduce invasiveness of human endometrial stromal cells. J Assist Reprod Genet 2018; 36:535-541. [PMID: 30554393 DOI: 10.1007/s10815-018-1352-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To compare effects of lipid-soluble statins (simvastatin, lovastatin, atorvastatin) and water-soluble statin (pravastatin) on growth and invasiveness of human endometrial stromal (HES) cells. METHODS Endometrial biopsies were collected during the proliferative phase from five volunteers. HES cells were isolated and cultured in the absence or in the presence of simvastatin, lovastatin, atorvastatin, and pravastatin. Effects of statins on DNA synthesis, cell viability, activity of caspases 3/7 and invasiveness were evaluated. RESULTS The proliferation of HES cells was significantly decreased by simvastatin (by 47-89%), lovastatin (by 46-78%), and atorvastatin (by 21-48%) in a concentration-dependent manner. Activity of executioner caspases 3/7 was significantly increased by simvastatin (by 10-25%), lovastatin (by 19%) and atorvastatin (by 7-10%) in a concentration-dependent manner. The greatest effects were observed in response to simvastatin. Accounting for the effects of statins on cell number, the invasiveness of HES cells was significantly decreased in cells treated with simvastatin (by 49%), lovastatin (by 54%), and atorvastatin (by 53%). Pravastatin had little or no effects on any of the tested endpoints. CONCLUSIONS Present findings demonstrate that only lipid-soluble among tested statins were effective in inhibition of growth and invasiveness of HES cells. These findings may have clinical relevance in treatment of endometriosis.
Collapse
|
13
|
Taylor HS, Alderman Iii M, D'Hooghe TM, Fazleabas AT, Duleba AJ. Effect of simvastatin on baboon endometriosis. Biol Reprod 2018. [PMID: 28637327 DOI: 10.1093/biolre/iox058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endometriosis, a common disorder affecting women of reproductive age, is characterized by ectopic growth of the endometrial tissues, altered steroid hormone response, and inflammation. Previous studies revealed that statins, selective inhibitors of the key step of mevalonate pathway, inhibit growth of endometrial stromal cells in vitro and reduce endometriotic lesions in murine models of endometriosis. This study evaluated the effects of simvastatin on the development of endometriosis in a baboon model of this disease. Sixteen baboons were randomly assigned to the treatment group (simvastatin, 20 mg daily) or to the control group. Endometriotic lesions were evaluated by laparoscopy after 3 months. The volume of red, orange-red, and white endometriotic lesions was significantly reduced by 78% in animals treated with simvastatin. The expression of a marker of proliferation, proliferating cell nuclear antigen (PCNA), was significantly reduced in animals receiving simvastatin in red lesions, white lesions, black lesions, and in adhesions. Simvastatin was also associated with an increase in the expression of estrogen receptor alpha in red lesions, and a decrease in the expression of estrogen receptor beta in black lesions, in adhesions, and in eutopic endometrium. Furthermore, simvastatin significantly reduced the expression of neopterin, a marker of inflammation, oxidative stress, and immune system activation. Collectively, the present findings indicate that the inhibition of the mevalonate pathway by simvastatin reduces the risk of developing endometriosis in the primate model of this disease by decreasing the growth of endometrial lesions, by modulating the expression of genes encoding for estrogen receptors, and by reducing inflammation.
Collapse
Affiliation(s)
- Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myles Alderman Iii
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M D'Hooghe
- Research Group Reproductive Medicine and Biology, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven (University of Leuven), Belgium.,Division of Reproductive Health and Reproductive Biology, Institute of Primate Research, Karen, Nairobi, Kenya
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Antoni J Duleba
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Reproductive Endocrinology and Infertility, Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Yan LL, Zhang WY, Wei XH, Yan L, Pan CS, Yu Y, Fan JY, Liu YY, Zhou H, Han JY, Yao XS. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol 2018; 9:296. [PMID: 29674972 PMCID: PMC5895855 DOI: 10.3389/fphys.2018.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Lu-Lu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Wei-Yang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Yu Fan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Sheng Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Li Y, Liu Q, Sun J, Wang J, Liu X, Gao J. Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells. Int J Mol Med 2018; 41:2997-3005. [PMID: 29436584 DOI: 10.3892/ijmm.2018.3456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/25/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathology of neuronal damage during Alzheimer's disease (AD). Previous studies suggest that simvastatin (SV) ameliorates amyloid β (Aβ)‑mediated cognitive impairment in AD patients and transgenic mice; however, the mechanisms remain unknown. To investigate the potential mechanisms by which SV protects against AD neurotoxicity, the present study used a series of cellular and molecular assays to analyze the effects of SV in an in vitro model of Aβ1‑42-induced injury. The results demonstrated that SV protected against Aβ1‑42‑induced SH‑SY5Y cell injury by inhibiting the release of cytochrome c from the mitochondria to the cytoplasm, and reducing the production of intracellular reactive oxygen species. In addition, SV downregulated cleaved‑caspase‑3 protein levels, increased the ratio of B cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein, and increased the protein levels of peroxisome proliferator-activated receptor γ coactivator-1α in the Aβ1‑42‑treated cells. Furthermore, SV increased the mitochondrial membrane potential and adenosine triphosphate levels, and enhanced the cell respiratory function and mitochondrial mass of the cells. In conclusion, the present study revealed that SV protected SH‑SY5Y cells against Aβ1‑42-induced injury through regulating the mitochondrial apoptosis pathway and mitochondrial function.
Collapse
Affiliation(s)
- Yunzi Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Sun
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
16
|
Zhang S, Matsushita T, Kuroda R, Nishida K, Matsuzaki T, Matsumoto T, Takayama K, Nagai K, Oka S, Tabata Y, Nagamune K, Kurosaka M. Local Administration of Simvastatin Stimulates Healing of an Avascular Meniscus in a Rabbit Model of a Meniscal Defect. Am J Sports Med 2016; 44:1735-43. [PMID: 27159292 DOI: 10.1177/0363546516638342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Repair of an avascular meniscus is challenging because of its low capacity for healing. Several reports have shown that simvastatin stimulates the anabolic activity of intervertebral fibrochondrocytes, suggesting that simvastatin may be used for the treatment of meniscal defects. PURPOSE To test whether the local administration of simvastatin stimulates healing of an avascular meniscus in rabbits. STUDY DESIGN Controlled laboratory study. METHODS In 30 Japanese White rabbits, a cylindrical defect (1.5-mm diameter) was introduced into the avascular zone of the anterior part of the medial meniscus in bilateral knees. Either a gelatin hydrogel (control group) or simvastatin-conjugated gelatin hydrogel (simvastatin group) was implanted into the defect. Histological assessments were performed using qualitative scoring systems, and immunohistochemical analysis was performed at 12 weeks after surgery. The occupation ratio (OR) and safranin O staining occupation ratio (SOR) were evaluated quantitatively at each time point. Stiffness of the regenerated tissue was analyzed biomechanically at 12 weeks after surgery. Rabbit meniscal cells were cultured in the presence or absence of 0.5 μM simvastatin, and then real-time polymerase chain reaction was performed to evaluate gene expression. RESULTS The qualitative score was significantly higher in the simvastatin group after 8 and 12 weeks (P = .031 and .035, respectively). The mean OR and SOR were also significantly higher in the simvastatin group (OR at 8 weeks: 0.396 ± 0.019 [control] vs 0.564 ± 0.123 [simvastatin], P = .008; OR at 12 weeks: 0.451 ± 0.864 [control] vs 0.864 ± 0.035 [simvastatin], P = .001; SOR at 8 weeks: 0.071 ± 0.211 [control] vs 0.487 ± 0.430 [simvastatin], P = .009; SOR at 12 weeks: 0.093 ± 0.088 [control] vs 0.821 ± 0.051 [simvastatin], P = .006). Immunohistochemical analysis showed that at 12 weeks, the reparative tissue was more strongly positive for type I collagen (COL1), type II collagen (COL2), bone morphogenetic protein 2 (BMP-2), and BMP-7 in the simvastatin group than in the control group. Biomechanical analysis showed significantly higher stiffness in the simvastatin group (2.417 ± 1.593 N/ms [control] vs 5.172 ± 1.078 N/ms [simvastatin]; P = .005). In rabbit meniscal cells, BMP-2 and BMP-7 were upregulated after 4 and 8 hours and after 7 and 14 days, whereas COL1A1 and COL2A1 were significantly upregulated by simvastatin after 7 and 14 days. CONCLUSION The local administration of simvastatin promotes the regeneration of an avascular meniscus in the rabbit model of a meniscal defect. The mechanism may involve the upregulation of BMPs and the subsequent upregulation of COL1 and COL2. CLINICAL RELEVANCE This study suggests that simvastatin stimulated intrinsic healing of an avascular meniscus. The local administration of simvastatin is safe and inexpensive and seems to be a promising treatment of meniscal injuries.
Collapse
Affiliation(s)
- Shurong Zhang
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyohei Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tokio Matsuzaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kanto Nagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Oka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiko Tabata
- Field of Tissue Engineering, Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kouki Nagamune
- Department of Human and Artificial Intelligent Systems, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Dai L, Xu M, Wu H, Xue L, Yuan D, Wang Y, Shen Z, Zhao H, Hu M. The functional mechanism of simvastatin in experimental osteoporosis. J Bone Miner Metab 2016; 34:23-32. [PMID: 25511080 DOI: 10.1007/s00774-014-0638-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Osteoporosis is a systemic and metabolic bone disease. New drugs with good curative effect, fewer side effects, and high safety need to be developed urgently. Recently, simvastatin has been used to treat osteoporosis more frequently; however, its clinical effect and treatment mechanism are still unknown. With the use of animal models, the treatment effectiveness of simvastatin on experimental osteoporosis was investigated and the functional mechanism was preliminarily explored. The results show that simvastatin significantly increased the mechanical parameters such as maximum load, stiffness, and energy-absorbing capacity, and improved the microarchitecture. They indicated that the antiosteoporosis activity of simvastatin may be due to the promotion of proliferation and differentiation of osteoblasts. Simvastatin was effective in treating experimental osteoporosis. This study provides necessary experimental evidence for the clinical application of simvastatin in osteoporosis treatment.
Collapse
Affiliation(s)
- Lifen Dai
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
- Department of Endocrinology, Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, People's Republic of China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Ming Xu
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Haiying Wu
- Department of Emergency Medicine and Intensive Care Unit, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lanjie Xue
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dekai Yuan
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Yuan Wang
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Zhiqiang Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Hongbin Zhao
- Department of Emergency Medicine and Intensive Care Unit, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.
| | - Min Hu
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China.
- Department of Endocrinology, Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
18
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ, Chang LF, Ho ML, Chang JK. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol 2015; 98:453-64. [PMID: 26410676 DOI: 10.1016/j.bcp.2015.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022]
Abstract
Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 μM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chin Fu
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Tai
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ju Li
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Fu Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Je-Ken Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Hsieh KC, Kao CL, Feng CW, Wen ZH, Chang HF, Chuang SC, Wang GJ, Ho ML, Wu SM, Chang JK, Chen HT. A novel anabolic agent: a simvastatin analogue without HMG-CoA reductase inhibitory activity. Org Lett 2014; 16:4376-9. [PMID: 25115530 DOI: 10.1021/ol501486b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For the first time, structural information regarding the role of simvastatin in bone anabolism is described, and a bone-specific statin is introduced. Polyaspartate-conjugated simvastatin was synthesized by solid-phase synthesis with the assistance of microwave irradiation. It displays significant bone targeting and bone formation with less toxicity than simvastatin.
Collapse
Affiliation(s)
- Kuang-Chan Hsieh
- School of Pharmacy, ‡Department of Medicinal and Applied Chemistry, §Department of Fragrance and Cosmetic Science, ∥Orthopedic Research Center, ⊥Department of Physiology, and #Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University , Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosselli JEGC, Martins DMFS, Martins JL, Oliveira CRGCMD, Fagundes DJ, Taha MO. The effect of simvastatin on the regeneration of surgical cavities in the femurs of rabbits. Acta Cir Bras 2014; 29:87-92. [DOI: 10.1590/s0102-86502014000200003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/20/2014] [Indexed: 11/21/2022] Open
|