1
|
Xiang B, Han L, Wang X, Tang L, Li K, Li X, Zhao X, Xia M, Zhou X, Zhang F, Liu KJ. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland. Int J Radiat Oncol Biol Phys 2016; 96:538-46. [PMID: 27681750 DOI: 10.1016/j.ijrobp.2016.06.2442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. METHODS AND MATERIALS The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. RESULTS NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. CONCLUSIONS These findings reveal the regulatory mechanisms of NAMPT expression, which help to understand the mechanism of the cytoprotective role of phenylephrine on irradiated tissues.
Collapse
Affiliation(s)
- Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, China.
| | - Lichi Han
- Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian, China
| | - Xinyue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, China
| | - Ling Tang
- Life Sciences and Technology College, Dalian University, Dalian, China
| | - Kailiang Li
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuxiu Li
- Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian, China
| | - Xibo Zhao
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Xia
- Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian, China
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Fuyin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
2
|
Čikoš Š, Fabian D, Burkuš J, Janštová Ž, Koppel J. Expression of dopamine and adrenergic receptors in mouse embryonic stem cells and preimplantation embryos. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Sun F, Yang XJ, Lv HY, Tang YB, An SM, Ding XP, Li WB, Teng L, Shen Y, Chen HZ, Zhu L. β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. J Cell Physiol 2015; 230:2640-6. [PMID: 25639860 DOI: 10.1002/jcp.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 01/19/2023]
Abstract
Adrenoreceptors (ARs) are widely expressed and play essential roles throughout the body. Different subtype adrenoceptors elicit distinct effects on cell proliferation, but knowledge remains scarce about the subtype-specific effects of β2-ARs on the proliferation of embryonic pluripotent stem (PS) cells that represent different characteristics of proliferation and cell cycle regulation with the somatic cells. Herein, we identified a β2-AR/AC/cAMP/PKA signaling pathway in embryonic PS cells and found that the pathway stimulation inhibited proliferation and cell cycle progression involving modulating the stem cell growth and cycle regulatory machinery. Embryonic stem (ES) cells and embryonal carcinoma stem (ECS) cells expressed functional β-ARs coupled to AC/cAMP/PKA signaling. Agonistic activation of β-ARs led to embryonic PS cell cycle arrest and proliferation inhibition. Pharmacological and genetic analyzes using receptor subtype blocking and RNA interference approaches revealed that this effect selectively depended on β2-AR signaling involving the regulation of AKT, ERK, Rb, and Cyclin E molecules. Better understanding of the effects of β2-ARs on embryonic PS cell proliferation and cycle progression may provide new insights into stem cell biology and afford the opportunity for exploiting more selective ligands targeting the receptor subtype for the modulation of stem cells.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Jie Yang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Yu Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Bin Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Lin Teng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
4
|
Ishizuka T, Watanabe Y. [Involvement of cell membrane receptors on proliferation and differentiation of pluripotent stem cells]. Nihon Yakurigaku Zasshi 2014; 144:13-6. [PMID: 25007806 DOI: 10.1254/fpj.144.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|