1
|
Yasuda D, Hamano F, Masuda K, Dahlström M, Kobayashi D, Sato N, Hamakubo T, Shimizu T, Ishii S. Inverse agonism of lysophospholipids with cationic head groups at Gi-coupled receptor GPR82. Eur J Pharmacol 2023; 954:175893. [PMID: 37392830 DOI: 10.1016/j.ejphar.2023.175893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
GPR82 is an orphan G protein-coupled receptor (GPCR) that has been implicated in lipid storage in mouse adipocytes. However, the intracellular signaling as well as the specific ligands of GPR82 remain unknown. GPR82 is closely related to GPR34, a GPCR for the bioactive lipid molecule lysophosphatidylserine. In this study, we screened a lipid library using GPR82-transfected cells to search for ligands that act on GPR82. By measuring cyclic adenosine monophosphate levels, we found that GPR82 is an apparently constitutively active GPCR that leads to Gi protein activation. In addition, edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine), an artificial lysophospholipid with a cationic head group that exerts antitumor activity, inhibited the Gi protein activation by GPR82. Two endogenous lysophospholipids with cationic head groups, lysophosphatidylcholine (1-oleoyl-sn-glycero-3-phosphocholine) and lysophosphatidylethanolamine (1-oleoyl-sn-glycero-3-phosphoethanolamine), also exhibited GPR82 inhibitory activity, albeit weaker than edelfosine. Förster resonance energy transfer imaging analysis consistently demonstrated that Gi protein-coupled GPR82 has an apparent constitutive activity that is edelfosine-sensitive. Consistent data were obtained from GPR82-mediated binding analysis of guanosine-5'-O-(3-thiotriphosphate) to cell membranes. Furthermore, in GPR82-transfected cells, edelfosine inhibited insulin-induced extracellular signal-regulated kinase activation, like compounds that function as inverse agonists at other GPCRs. Therefore, edelfosine is likely to act as an inverse agonist of GPR82. Finally, GPR82 expression inhibited adipocyte lipolysis, which was abrogated by edelfosine. Our findings suggested that the cationic lysophospholipids edelfosine, lysophosphatidylcholine and lysophosphatidylethanolamine are novel inverse agonists for Gi-coupled GPR82, which is apparently constitutively active, and has the potential to exert lipolytic effects through GPR82.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumie Hamano
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Masuda
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Daiki Kobayashi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Nana Sato
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan.
| |
Collapse
|
2
|
Antihistamines Potentiate Dexamethasone Anti-Inflammatory Effects. Impact on Glucocorticoid Receptor-Mediated Expression of Inflammation-Related Genes. Cells 2021; 10:cells10113026. [PMID: 34831249 PMCID: PMC8617649 DOI: 10.3390/cells10113026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.
Collapse
|
3
|
Michel MC, Michel-Reher MB, Hein P. A Systematic Review of Inverse Agonism at Adrenoceptor Subtypes. Cells 2020; 9:E1923. [PMID: 32825009 PMCID: PMC7564766 DOI: 10.3390/cells9091923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
As many, if not most, ligands at G protein-coupled receptor antagonists are inverse agonists, we systematically reviewed inverse agonism at the nine adrenoceptor subtypes. Except for β3-adrenoceptors, inverse agonism has been reported for each of the adrenoceptor subtypes, most often for β2-adrenoceptors, including endogenously expressed receptors in human tissues. As with other receptors, the detection and degree of inverse agonism depend on the cells and tissues under investigation, i.e., they are greatest when the model has a high intrinsic tone/constitutive activity for the response being studied. Accordingly, they may differ between parts of a tissue, for instance, atria vs. ventricles of the heart, and within a cell type, between cellular responses. The basal tone of endogenously expressed receptors is often low, leading to less consistent detection and a lesser extent of observed inverse agonism. Extent inverse agonism depends on specific molecular properties of a compound, but inverse agonism appears to be more common in certain chemical classes. While inverse agonism is a fascinating facet in attempts to mechanistically understand observed drug effects, we are skeptical whether an a priori definition of the extent of inverse agonism in the target product profile of a developmental candidate is a meaningful option in drug discovery and development.
Collapse
Affiliation(s)
- Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | | | |
Collapse
|
4
|
Les effets anti-H1 intéressants dans les insomnies de maintien : réflexion sur les intérêts comparés de la doxylamine et de la doxépine. Encephale 2020; 46:80-82. [DOI: 10.1016/j.encep.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022]
|
5
|
Kamei M, Otani Y, Hayashi H, Nakamura T, Yanai K, Furuta K, Tanaka S. Suppression of IFN-γ Production in Murine Splenocytes by Histamine Receptor Antagonists. Int J Mol Sci 2018; 19:E4083. [PMID: 30562962 PMCID: PMC6321562 DOI: 10.3390/ijms19124083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that histamine synthesis induced in several types of tumor tissues modulates tumor immunity. We found that a transient histamine synthesis was induced in CD11b⁺Gr-1⁺ splenocytes derived from BALB/c mice transplanted with a syngeneic colon carcinoma, CT-26, when they were co-cultured with CT-26 cells. Significant levels of IFN-γ were produced under this co-culture condition. We explored the modulatory roles of histamine on IFN-γ production and found that several histamine receptor antagonists, such as pyrilamine, diphenhydramine, JNJ7777120, and thioperamide, could significantly suppress IFN-γ production. However, suppression of IFN-γ production by these antagonists was also found when splenocytes were derived from the Hdc-/- BALB/c mice. Suppressive effects of these antagonists were found on IFN-γ production induced by concanavalin A or the combination of an anti-CD3 antibody and an anti-CD28 antibody in a histamine-independent manner. Murine splenocytes were found to express H₁ and H₂ receptors, but not H₃ and H₄ receptors. IFN-γ production in the Hh1r-/- splenocytes induced by the combination of an anti-CD3 antibody and an anti-CD28 antibody was significantly suppressed by these antagonists. These findings suggest that pyrilamine, diphenhydramine, JNJ7777120, and thioperamide can suppress IFN-γ production in activated splenocytes in a histamine-independent manner.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Histamine/genetics
- Histamine/metabolism
- Histamine Antagonists/pharmacology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Spleen/metabolism
- Spleen/pathology
Collapse
Affiliation(s)
- Miho Kamei
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Yukie Otani
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Hidenori Hayashi
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Satoshi Tanaka
- Department of Pharmacology, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
6
|
Golovko AI, Ivanov MB, Golovko ES, Dolgo-Saburov VB, Zatsepin EP. The Neurochemical Mechanisms of the Pharmacological Activities of Inverse Agonists of the Benzodiazepine Binding Site. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Ekstrand C, Ingvast-Larsson C, Bondesson U, Hedeland M, Olsén L. Cetirizine per os: exposure and antihistamine effect in the dog. Acta Vet Scand 2018; 60:77. [PMID: 30477556 PMCID: PMC6258303 DOI: 10.1186/s13028-018-0431-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cetirizine is an antihistamine used in dogs, but plasma concentrations in relation to effect after oral administration are not well studied. This study investigated cetirizine exposure and the plasma cetirizine concentration-antihistamine response relation in the dog following oral administration of cetirizine. RESULTS Eight Beagle dogs were included in a cross-over study consisting of two treatments. In treatment one, cetirizine 2-4 mg/kg was administered per os once daily for 3 days. The other treatment served as a control. Wheal diameter induced by intra-dermal histamine injections served as response-biomarker. Cetirizine plasma concentration was quantified by UHPLC-MS/MS. Median (range) cetirizine plasma terminal half-life was 10 h (7.9-16.5). Cetirizine significantly inhibited wheal formation compared with the premedication baseline. Maximum inhibition of wheal formation after treatment with cetirizine per os was 100% compared with premedication wheal diameter. The median (range) IC50-value for reduction in wheal area was 0.33 µg/mL (0.07-0.45). The median (range) value for the sigmoidicity factor was 1.8 (0.8-3.5). A behavioral study was also conducted and revealed no adverse effects, such as sedation. CONCLUSION The results indicate that a once-daily dosing regimen of 2-4 mg/kg cetirizine per os clearly provides a sufficient antihistamine effect. Based on this experimental protocol, cetirizine may be an option to treat histamine-mediated inflammation in the dog based on this experimental protocol but additional clinical studies are required.
Collapse
Affiliation(s)
- Carl Ekstrand
- Department of Biomedicine and Veterinary Public Health, Division of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07 Uppsala, Sweden
| | - Carina Ingvast-Larsson
- Department of Biomedicine and Veterinary Public Health, Division of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07 Uppsala, Sweden
| | - Ulf Bondesson
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, Uppsala, Sweden
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, Uppsala, Sweden
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Lena Olsén
- Department of Biomedicine and Veterinary Public Health, Division of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07 Uppsala, Sweden
- Department of Clinical Sciences, Division of Veterinary Nursing, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Haas MJ, Jurado-Flores M, Hammoud R, Plazarte G, Onstead-Haas L, Wong NC, Mooradian AD. Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sci 2018; 208:102-110. [DOI: 10.1016/j.lfs.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
|
9
|
Haas MJ, Plazarte M, Chamseddin A, Onstead-Haas L, Wong NCW, Plazarte G, Mooradian AD. Inhibition of hepatic apolipoprotein A-I gene expression by histamine. Eur J Pharmacol 2018; 823:49-57. [PMID: 29378195 DOI: 10.1016/j.ejphar.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/12/2023]
Abstract
In a recent high throughput analysis to identify drugs that alter hepatic apolipoprotein A-I (apo A-I) expression, histamine receptor one (H1) antagonists emerged as potential apo A-1 inducing drugs. Thus the present study was undertaken to identify some of the underlying molecular mechanisms of the effect of antihistaminic drugs on apo AI production. Apo A-I levels were measured by enzyme immunoassay and Western blots. Apo A-I mRNA levels were measured by reverse transcription real-time PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as the internal control. The effects of histamine and antihistamines on apo A-I gene were determined by transient transfection of plasmids containing the apo A-I gene promoter. Histamine repressed while (H1) receptor antagonist azelastine increased apo A-I protein and mRNA levels within 48 h in a dose-dependent manner. Azelastine and histamine increased and suppressed, respectively, apo A-I gene promoter activity through a peroxisome proliferator activated receptor α response element. Treatment of HepG2 cells with other H1 receptor antagonists including fexofenadine, cetirizine, and diphenhydramine increased apo A-I levels in a dose-dependent manner while treatment with H2 receptor antagonists including cimetidine, famotidine, and ranitidine had no effect. We conclude that H1 receptor signaling is a novel pathway of apo A1 gene expression and therefore could be an important therapeutic target for enhancing de-novo apo A-1 synthesis.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States.
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Norman C W Wong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Gabriela Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| |
Collapse
|
10
|
Yanai K, Yoshikawa T, Yanai A, Nakamura T, Iida T, Leurs R, Tashiro M. The clinical pharmacology of non-sedating antihistamines. Pharmacol Ther 2017; 178:148-156. [PMID: 28457804 DOI: 10.1016/j.pharmthera.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We previously reported on brain H1 receptor occupancy measurements of antihistamines in human brain using [11C]doxepin and positron emission tomography (PET). We proposed the use of brain H1 receptor occupancy to classify antihistamines objectively into three categories of sedating, less-sedating, and non-sedating antihistamines according to their sedative effects. Non-sedating antihistamines are recommended for the treatment of allergies such as pollinosis and atopic dermatitis because of their low penetration into the central nervous system. Physicians and pharmacists are responsible for fully educating patients about the risks of sedating antihistamines from pharmacological points of view. If a sedating antihistamine must be prescribed, its sedative effects should be thoroughly considered before choosing the drug. Non-sedating antihistamines should be preferentially used whenever possible as most antihistamines are equally efficacious, while adverse effects of sedating antihistamines can be serious. This review summarizes the pharmacological properties of clinically useful non-sedating antihistamines from the perspective of histamine function in the CNS.
Collapse
Affiliation(s)
- Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai 980-8575, Japan; Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University School of Medicine, Sendai 980-8575, Japan.
| | - Ai Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines and Systems, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, The Netherlands
| | - Manabu Tashiro
- Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Carnosine modulates glutamine synthetase expression in senescent astrocytes exposed to oxygen-glucose deprivation/recovery. Brain Res Bull 2017; 130:138-145. [PMID: 28115195 DOI: 10.1016/j.brainresbull.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Carnosine is believed to be neuroprotective in cerebral ischemia. However, few reports concern its function on senescent astrocytes during cerebral ischemia. The aim of this study was to investigate the effects of carnosine on cell damage and glutamine synthetase (GS) expression in D-galactose-induced senescent astrocytes exposed to oxygen-glucose deprivation/recovery (OGD/R). The results showed that OGD/R caused massive cell damage and a significant decrease in GS expression both in the young and senescent astrocytes. The GS expression level was partly recovered whereas it continued to decline in the recovery stage in the young and senescent astrocytes, respectively. Decreased GS expression significantly inhibited glutamate uptake and glutamine production and release. Carnosine prevented the cell damage, rescued the expression of GS and reversed the glutamate uptake activity and glutamine production in the senescent astrocytes exposed to OGD/R. The modulatory effect of carnosine on GS expression was partly antagonized by pyrilamine, a selective histamine H1 receptors antagonist, but not bestatin. Bisindolylmaleimide II, a broad-spectrum inhibitor of PKC could also reverse the action of carnosine on GS expression. Thus, histamine H1 receptors and PKC pathway may be involved in the modulatory action of carnosine in GS expression in the senescent astrocytes exposed to OGD/R.
Collapse
|
12
|
Controlled Allergen Challenge Facilities and Their Unique Contributions to Allergic Rhinitis Research. Curr Allergy Asthma Rep 2015; 15:11. [PMID: 26130471 DOI: 10.1007/s11882-015-0514-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study is to review advances in basic and clinical allergic rhinitis (AR) research over the past decade that have been conducted using controlled allergen challenge facility (CACF) models of allergen challenge. Databases, including PubMed, Medline, and Web of Science were searched for articles employing an ambient pollen exposure in a controlled facility to study AR, published between 2004 and the present date, using the terms as follows: CACF, Environmental Exposure Unit (EEU), Vienna Challenge Chamber (VCC), Fraunhofer Institute Environmental Challenge Chamber, Atlanta Allergen Exposure Unit, Biogenics Research Chamber, Allergen BioCube, Chiba and Osaka Environmental Challenge Chamber, exposure unit, challenge chamber, or environmental exposure chamber. Articles were then selected for relevance to the goals of the present review, including important contributions toward clinical and/or basic science allergy research. CACFs offer sensitive, specific, and reproducible methodology for allergen challenge. They have been employed since the 1980s and offer distinct advantages over traditional in-season multicentre trials when evaluating new treatments for AR. They have provided clinically applicable efficacy and pharmacologic information about important allergy medications, including antihistamines, decongestants, antileukotrienes, immunotherapies, and nasal steroids. CACF models have also contributed to basic science and novel/experimental therapy research. To date, no direct studies have been conducted comparing outcomes from one CACF to another. Over the past decade, CACF models have played an essential role in investigating the pathophysiology of AR and evaluating new therapies. The future opportunities for this model continue to expand.
Collapse
|
13
|
Michel MC, Seifert R. Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015; 308:C505-20. [PMID: 25631871 DOI: 10.1152/ajpcell.00389.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibitors are frequently used to identify the receptors, receptor subtypes, and associated signaling pathways involved in physiological cell responses. Based on the effects of such inhibitors conclusions are drawn about the involvement of their assumed target or lack thereof. While such inhibitors can be useful tools for a better physiological understanding, their uncritical use can lead to incorrect conclusions. This article reviews the concept of inhibitor selectivity and its implication for cell physiology. Specifically, we discuss the implications of using inhibitor vs. activator approaches, issues of direct vs. indirect pathway modulation, implications of inverse agonism and biased signaling, and those of orthosteric vs. allosteric, competitive vs. noncompetitive, and reversible vs. irreversible inhibition. Additional problems can result from inconsistent estimates of inhibitor potency and differences in potency between cell-free systems and intact cells. These concepts are illustrated by several examples of inhibitors displaying affinity for related but distinct targets or even unrelated targets. Of note, many of the issues being addressed are also applicable to genetic inhibition strategies. The main practical conclusion following from these concepts is that investigators should be critical in the choice of inhibitor, its concentrations, and its mode of application. When this advice is adhered to, small-molecule pharmacological inhibitors can be important experimental tools in the hand of physiologists.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| | - Roland Seifert
- Department of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
North ML, Walker TJ, Steacy LM, Hobsbawn BG, Allan RJ, Hackman F, Sun X, Day AG, Ellis AK. Add-on histamine receptor-3 antagonist for allergic rhinitis: a double blind randomized crossover trial using the environmental exposure unit. Allergy Asthma Clin Immunol 2014; 10:33. [PMID: 25024716 PMCID: PMC4094756 DOI: 10.1186/1710-1492-10-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral antihistamines that target the histamine receptor-1, such as fexofenadine, offer suboptimal relief of allergic rhinitis-associated nasal congestion. Combinations with oral sympathomimetics, such as pseudoephedrine, relieve congestion but produce side effects. Previous animal and human studies with histamine receptor-3 antagonists, such as PF-03654764, demonstrate promise. METHODS Herein we employ the Environmental Exposure Unit (EEU) to conduct the first randomized controlled trial of PF-03654764 in allergic rhinitis. 64 participants were randomized in a double-blind, placebo-controlled 4-period crossover study. Participants were exposed to ragweed pollen for 6 hours post-dose in the EEU. The primary objective was to compare the effect of PF-03654764 + fexofenadine to pseudoephedrine + fexofenadine on the subjective measures of congestion and Total Nasal Symptom Score (TNSS). The objectives of our post-hoc analyses were to compare all treatments to placebo and determine the onset of action (OA). This trial was registered at ClinicalTrials.gov (NCT01033396). RESULTS PF-03654764 + fexofenadine was not superior to pseudoephedrine + fexofenadine. In post-hoc analyses, PF-03654764 + fexofenadine significantly reduced TNSS, relative to placebo, and OA was 60 minutes. Pseudoephedrine + fexofenadine significantly reduced congestion and TNSS, relative to placebo, with OA of 60 and 30 minutes, respectively. Although this study was not powered for a statistical analysis of safety, it was noted that all PF-03654764-treated groups experienced an elevated incidence of adverse events. CONCLUSIONS PF-03654764 + fexofenadine failed to provide superior relief of allergic rhinitis-associated nasal symptoms upon exposure to ragweed pollen compared to fexofenadine + pseudoephedrine. However, in post-hoc analyses, PF-03654764 + fexofenadine improved TNSS compared to placebo. Side effects in the PF-03654764-treated groups were clinically significant compared to the controls.
Collapse
Affiliation(s)
- Michelle L North
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada ; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | - Terry J Walker
- Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | - Lisa M Steacy
- Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | - Barnaby G Hobsbawn
- Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | - Xiaoqun Sun
- Clinical Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Andrew G Day
- Clinical Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada ; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada ; Division of Allergy and Immunology, Department of Medicine, Queen's University, Doran 1, Kingston General Hospital, 76 Stuart Street, Kingston, ON K7L 2 V7, Canada
| |
Collapse
|
15
|
Dicpinigaitis PV, Morice AH, Birring SS, McGarvey L, Smith JA, Canning BJ, Page CP. Antitussive drugs--past, present, and future. Pharmacol Rev 2014; 66:468-512. [PMID: 24671376 PMCID: PMC11060423 DOI: 10.1124/pr.111.005116] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Collapse
Affiliation(s)
- P V Dicpinigaitis
- King's College London, Franklin Wilkins Building, 100 Stamford St., London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|