1
|
Ishida M, Matsubara I, Yamauchi S, Nishi K, Sugahara T. Correlation between the biological activities and the chemical structures of conidendrin-related compounds: (-)-β-conidendrin inhibits degranulation of RBL-2H3 cells. Biosci Biotechnol Biochem 2025; 89:795-804. [PMID: 40107868 DOI: 10.1093/bbb/zbaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Conidendrin, a metabolite of lariciresinol (a lignan in dietary plants), has 8 stereoisomers with 3 asymmetric carbon atoms. However, the relationship between the chemical structure and biological activity of these stereoisomers remains unclear. Since strong cytotoxicity against rat basophilic cell line RBL-2H3 cells has been observed in 4 stereoisomers, the degranulation inhibitory effect of the other conidendrin isomers possessing no cytotoxicity was investigated. Significant degranulation inhibitory effect was observed on all 4 stereoisomers especially on (-)-β-conidendrin, suggesting that conidendrin exhibits stereospecific cytotoxic and degranulation inhibitory activities, and (-)-β-conidendrin is the most structurally effective isomer on antidegranulation. Additionally, (-)-β-conidendrin inhibited the antigen-induced increase in intracellular Ca2+ concentration and phosphorylation levels of Syk, PLCγ, and Akt, indicating that (-)-β-conidendrin inhibits Ca2+ influx into cells by downregulating the Syk/PLCγ and PI3K/Akt signaling pathways, thereby suppressing degranulation. Our findings suggest that conidendrin may be useful as an antiallergic functional food ingredient.
Collapse
Affiliation(s)
- Momoko Ishida
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Function Research Center, Ehime University, Matsuyama, Japan
| | - Iria Matsubara
- Department of Bioscience, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Satoshi Yamauchi
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Kosuke Nishi
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Function Research Center, Ehime University, Matsuyama, Japan
| | - Takuya Sugahara
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Function Research Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
2
|
Li J, Huang J, Zhang R, Lin Y, Chen Q, Gan X. Pretreatment with propofol restores intestinal epithelial cells integrity disrupted by mast cell degranulation in vitro. Physiol Res 2022. [DOI: 10.33549/physiolres.934933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Propofol has been shown to against intestinal reperfusion injury when treated either before or after ischemia, during which mast cell could be activated. The aim of this study was to evaluate the role of propofol in restoring the intestinal epithelial cells integrity disrupted by mast cell activation or the released tryptase after activation in vitro. We investigated the effect of: (1) tryptase on Caco-2 monolayers in the presence of PAR-2 inhibitor or propofol, (2) mast cell degranulation in a Caco-2/LAD-2 co-culture model in the presence of propofol, and (3) propofol on mast cell degranulation. Epithelial integrity was detected using transepithelial resistance (TER) and permeability to fluorescein isothiocyanate (FITC)-dextran (the apparent permeability coefficient, Papp). The expression of junctional proteins zonula occludens-1 (ZO-1/TJP1) and occludin were determined using western blot analysis and immunofluorescence microscopy. The intracellular levels of reactive oxidative species (ROS) and Ca2+ were measured using flow cytometry. Tryptase directly enhanced intestinal barrier permeability as demonstrated by significant reductions in TER, ZO-1, and occludin protein expression and concomitant increases in Papp. The intestinal barrier integrity was restored by PAR-2 inhibitor but not by propofol. Meanwhile, mast cell degranulation resulted in epithelial integrity disruption in the Caco-2/LAD-2 co-culture model, which was dramatically attenuated by propofol. Mast cell degranulation caused significant increases in intracellular ROS and Ca2+ levels, which were blocked by propofol and NAC. Propofol pretreatment can inhibit mast cell activation via ROS/Ca2+ and restore the intestinal barrier integrity induced by mast cell activation, instead of by tryptase.
Collapse
Affiliation(s)
| | | | | | | | | | - X Gan
- Department of Anesthesiology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University.
| |
Collapse
|
3
|
Emodin Ameliorates Intestinal Dysfunction by Maintaining Intestinal Barrier Integrity and Modulating the Microbiota in Septic Mice. Mediators Inflamm 2022; 2022:5026103. [PMID: 35677734 PMCID: PMC9168211 DOI: 10.1155/2022/5026103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced inflammatory response leads to intestinal damage and secondary bacterial translocation, causing systemic infections and eventually death. Emodin is a natural anthraquinone derivative in many plants with promising bioactivities. However, the effects and mechanisms of emodin on sepsis-induced intestinal dysfunctions have not been well clarified yet. We found that emodin treatment suppressed the inflammatory response in the intestines of septic mice. Intestinal barrier function was also improved by emodin through enhancing ZO-1 and occludin expression, which prevented the secondary translocation of Escherichia coli. By proteome microarray investigation, JNK2 was identified as a direct target of emodin. In vitro study also showed that emodin inhibited LPS-induced inflammatory response in intestinal epithelial cells. Nuclear factors including NF-κB and AP-1 were further identified as downstream effectors of JNK2. Bioinformatic analysis based on 16s rRNA gene sequencing illustrated that emodin treatment significantly increased the alpha- and beta-diversity of gut microbiota in septic mice. Moreover, data according to functional prediction showed that emodin decreased the abundance of potential pathogenic bacteria in gut. Our findings have shown that emodin treatment prevented inflammatory induced barrier dysfunction and decreased the potential pathogenicity of lumen bacteria, reducing the hazard of lumen bacterial translocation during sepsis.
Collapse
|
4
|
Wang X, Ding Z, Ma K, Sun C, Zheng X, You Y, Zhang S, Peng Y, Zheng J. Cysteine-Based Protein Covalent Binding and Hepatotoxicity Induced by Emodin. Chem Res Toxicol 2022; 35:293-302. [DOI: 10.1021/acs.chemrestox.1c00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Kaiqi Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaojiao Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yutong You
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
5
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
6
|
Castillo-Arellano JI, Guzmán-Gutiérrez SL, Ibarra-Sánchez A, Hernández-Ortega S, Nieto-Camacho A, Medina-Campos ON, Pedraza-Chaverri J, Reyes-Chilpa R, González-Espinosa C. Jacareubin inhibits FcεRI-induced extracellular calcium entry and production of reactive oxygen species required for anaphylactic degranulation of mast cells. Biochem Pharmacol 2018; 154:344-356. [PMID: 29802828 DOI: 10.1016/j.bcp.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Mast cells (MCs) are important effectors in allergic reactions since they produce a number of pre-formed and de novo synthesized pro-inflammatory compounds in response to the high affinity IgE receptor (FcεRI) crosslinking. IgE/Antigen-dependent degranulation and cytokine synthesis in MCs have been recognized as relevant pharmacological targets for the control of deleterious inflammatory reactions. Despite the relevance of allergic diseases worldwide, efficient pharmacological control of mast cell degranulation has been elusive. In this work, the xanthone jacareubin was isolated from the heartwood of the tropical tree Callophyllum brasilense, and its tridimensional structure was determined for the first time by X-ray diffraction. Also, its effects on the main activation parameters of bone marrow-derived mast cells (BMMCs) were evaluated. Jacareubin inhibited IgE/Ag-induced degranulation in a dose-response manner with an IC50 = 46 nM. It also blocked extracellular calcium influx triggered by IgE/Ag complexes and by the SERCA ATPase inhibitor thapsigargin (Thap). Inhibition of calcium entry correlated with a blockage on the reactive oxygen species (ROS) accumulation. Antioxidant capacity of jacareubin was higher than the showed by α-tocopherol and caffeic acid, but similar to trolox. Jacareubin shown inhibitory actions on xanthine oxidase, but not on NADPH oxidase (NOX) activities. In vivo, jacareubin inhibited passive anaphylactic reactions and TPA-induced edema in mice. Our data demonstrate that jacareubin is a potent natural compound able to inhibit anaphylactic degranualtion in mast cells by blunting FcεRI-induced calcium flux needed for secretion of granule content, and suggest that xanthones could be efficient anti-oxidant, antiallergic, and antiinflammatory molecules.
Collapse
Affiliation(s)
- J I Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico; Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - S L Guzmán-Gutiérrez
- Departamento de Inmunología, Catedrática CONACyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - A Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | - A Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - O N Medina-Campos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - J Pedraza-Chaverri
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - R Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico.
| | - C González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico.
| |
Collapse
|
7
|
Ding W, Sun J, Lian H, Xu C, Liu X, Zheng S, Zhang D, Han X, Liu Y, Chen X, God′spower BO, Li Y. The Influence of Shuttle-Shape Emodin Nanoparticles on the Streptococcus suis Biofilm. Front Pharmacol 2018; 9:227. [PMID: 29593544 PMCID: PMC5859365 DOI: 10.3389/fphar.2018.00227] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Biofilm is one of the most important physiological protective barriers of the Streptococcus suis (S. suis), and it is also one of the primary causes of hindrance to drug infiltration, reduction of bactericidal effects, and the development of antibiotic resistance. In order to intervene or eliminate S. suis biofilm, shuttle-shape emodin-loaded nanoparticles were developed in our study. The emodin nanoparticles were prepared by emodin and gelatin-cyclodextrin which was synthesized as drug carrier, and the nanoparticles were 174 nm in size, -4.64 mv in zeta potential, and exhibited a sustained emodin release. Moreover, the delivery kinetics of nanoparticles were also explored in our study. The confocal laser scanning microscopy and colony forming unit enumeration experiment indicated that nanoparticles could increase drug infiltration and uptake by biofilm. The flow cytometry system analysis showed that nanoparticles could be up taken by 99% of the bacteria cells. TCP assay and scanning electron microscopy showed that the nanoparticles had better effect on biofilm inhibition and elimination when compared with emodin solution. These results revealed that the emodin nanoparticles had a better therapeutic effect on the S. suis biofilm in vitro.
Collapse
Affiliation(s)
- Wenya Ding
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - He Lian
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Changgeng Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xin Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Sidi Zheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Dong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaopeng Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanyan Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xueying Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello O. God′spower
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanhua Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
8
|
Ma L, Li H, Zhang S, Xiong X, Chen K, Jiang P, Jiang K, Deng G. Emodin ameliorates renal fibrosis in rats via TGF-β1/Smad signaling pathway and function study of Smurf 2. Int Urol Nephrol 2017; 50:373-382. [DOI: 10.1007/s11255-017-1757-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
|
9
|
Ayyadurai S, Gibson AJ, D'Costa S, Overman EL, Sommerville LJ, Poopal AC, Mackey E, Li Y, Moeser AJ. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukoc Biol 2017; 102:1299-1312. [PMID: 28684600 DOI: 10.1189/jlb.2hi0317-088rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Life stress is a major risk factor in the onset and exacerbation of mast cell-associated diseases, including allergy/anaphylaxis, asthma, and irritable bowel syndrome. Although it is known that mast cells are highly activated upon stressful events, the mechanisms by which stress modulates mast cell function and disease pathophysiology remains poorly understood. Here, we investigated the role of corticotropin-releasing factor receptor subtype 1 (CRF1) in mast cell degranulation and associated disease pathophysiology. In a mast cell-dependent model of IgE-mediated passive systemic anaphylaxis (PSA), prophylactic administration of the CRF1-antagonist antalarmin attenuated mast cell degranulation and hypothermia. Mast cell-deficient KitW-sh/W-sh mice engrafted with CRF1-/- bone marrow-derived mast cells (BMMCs) exhibited attenuated PSA-induced serum histamine, hypothermia, and clinical scores compared with wild-type BMMC-engrafted KitW-sh/W-sh mice. KitW-sh/W-sh mice engrafted with CRF1-/- BMMCs also exhibited suppressed in vivo mast cell degranulation and intestinal permeability in response to acute restraint stress. Genetic and pharmacologic experiments with murine BMMCs, rat RBL-2H3, and human LAD2 mast cells demonstrated that although CRF1 activation did not directly induce MC degranulation, CRF1 signaling potentiated the degranulation responses triggered by diverse mast cell stimuli and was associated with enhanced release of Ca2+ from intracellular stores. Taken together, our results revealed a prominent role for CRF1 signaling in mast cells as a positive modulator of stimuli-induced degranulation and in vivo pathophysiologic responses to immunologic and psychologic stress.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Susan D'Costa
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth L Overman
- Department of Biology, Methodist University, Fayetteville, North Carolina, USA
| | - Laura J Sommerville
- Department of Pathology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Ashwini C Poopal
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,Comparative Biomedical Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; .,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA; and.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Pettersson H, Zarnegar B, Westin A, Persson V, Peuckert C, Jonsson J, Hallgren J, Kullander K. SLC10A4 regulates IgE-mediated mast cell degranulation in vitro and mast cell-mediated reactions in vivo. Sci Rep 2017; 7:1085. [PMID: 28439090 PMCID: PMC5430724 DOI: 10.1038/s41598-017-01121-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Mast cells act as sensors in innate immunity and as effector cells in adaptive immune reactions. Here we demonstrate that SLC10A4, also referred to as the vesicular aminergic-associated transporter, VAAT, modifies mast cell degranulation. Strikingly, Slc10a4 -/- bone marrow-derived mast cells (BMMCs) had a significant reduction in the release of granule-associated mediators in response to IgE/antigen-mediated activation, whereas the in vitro development of mast cells, the storage of the granule-associated enzyme mouse mast cell protease 6 (mMCP-6), and the release of prostaglandin D2 and IL-6 were normal. Slc10a4-deficient mice had a strongly reduced passive cutaneous anaphylaxis reaction and a less intense itching behaviour in response to the mast cell degranulator 48/80. Live imaging of the IgE/antigen-mediated activation showed decreased degranulation and that ATP was retained to a higher degree in mast cell granules lacking SLC10A4. Furthermore, ATP was reduced by two thirds in Slc10a4 -/- BMMCs supernatants in response to IgE/antigen. We speculate that SLC10A4 affects the amount of granule-associated ATP upon IgE/antigen-induced mast cell activation, which affect the release of granule-associated mast cell mediators. In summary, SLC10A4 acts as a regulator of degranulation in vitro and of mast cell-related reactions in vivo.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
- Department of Organismal Biology, Uppsala University, Norbyv, 18A, 752 36, Uppsala, Sweden
| | - Behdad Zarnegar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Annika Westin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Viktor Persson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
11
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligeqi, Ni J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res 2016; 30:1207-18. [PMID: 27188216 PMCID: PMC7168079 DOI: 10.1002/ptr.5631] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/17/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022]
Abstract
Emodin is a natural anthraquinone derivative that occurs in many widely used Chinese medicinal herbs, such as Rheum palmatum, Polygonum cuspidatum and Polygonum multiflorum. Emodin has been used as a traditional Chinese medicine for over 2000 years and is still present in various herbal preparations. Emerging evidence indicates that emodin possesses a wide spectrum of pharmacological properties, including anticancer, hepatoprotective, antiinflammatory, antioxidant and antimicrobial activities. However, emodin could also lead to hepatotoxicity, kidney toxicity and reproductive toxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that emodin has poor oral bioavailability in rats because of its extensive glucuronidation. This review aims to comprehensively summarize the pharmacology, toxicity and pharmacokinetics of emodin reported to date with an emphasis on its biological properties and mechanisms of action. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Jing Fu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xingbin Yin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Sali Cao
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xuechun Li
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Longfei Lin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Huyiligeqi
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
- Affiliated Hospital, Inner Mongolia University for NationalitiesTongliao028000PR China
| | - Jian Ni
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| |
Collapse
|
13
|
Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol 2015; 778:158-68. [PMID: 26130122 DOI: 10.1016/j.ejphar.2015.05.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Deirdre Frances Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - James William Barlow
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Stephens Green, Dublin 2, Ireland
| | - John Jarlath Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
14
|
Shi Y, Li H, Li J, Zhi D, Zhang X, Liu H, Wang H, Li H. Development, optimization and evaluation of emodin loaded nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Anti-inflammatory effect of emodin via attenuation of NLRP3 inflammasome activation. Int J Mol Sci 2015; 16:8102-9. [PMID: 25867480 PMCID: PMC4425069 DOI: 10.3390/ijms16048102] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
Emodin, an active constituent of oriental herbs, is widely used to treat allergy, inflammation, and other symptoms. This study provides the scientific basis for the anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone marrow-derived macrophages were used to study the effects of emodin on inflammasome activation by using inflammasome inducers such as ATP, nigericin, and silica crystals. The lipopolysaccharide (LPS)-induced endotoxin shock model was employed to study the effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL)-1β secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation induced by ATP, nigericin, and silica crystals. Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based evidence, especially with respect to regulation of inflammasome activation, substantiating traditional claims of emodin in the treatment of inflammation-related disorders.
Collapse
|