1
|
Altrocchi C, Van Ammel K, Steemans M, Kreir M, Tekle F, Teisman A, Gallacher DJ, Lu HR. Evaluation of chronic drug-induced electrophysiological and cytotoxic effects using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Front Pharmacol 2023; 14:1229960. [PMID: 37492082 PMCID: PMC10364322 DOI: 10.3389/fphar.2023.1229960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction: Cardiotoxicity is one of the leading causes of compound attrition during drug development. Most in vitro screening platforms aim at detecting acute cardio-electrophysiological changes and drug-induced chronic functional alterations are often not studied in the early stage of drug development. Therefore, we developed an assay using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that evaluates both drug-induced acute and delayed electrophysiological and cytotoxic effects of reference compounds with clinically known cardiac outcomes. Methods: hiPSC-CMs were seeded in 48-well multielectrode array (MEA) plates and were treated with four doses of reference compounds (covering and exceeding clinical free plasma peak concentrations -fCmax values) and MEA recordings were conducted for 4 days. Functional-electrophysiological (field-potentials) and viability (impedance) parameters were recorded with a MEA machine. Results: To assess this platform, we tested tyrosine-kinase inhibitors with high-cardiac risk profile (sunitinib, vandetanib and nilotinib) and low-cardiac risk (erlotinib), as well as known classic cardiac toxic drugs (doxorubicin and BMS-986094), ion-channel trafficking inhibitors (pentamidine, probucol and arsenic trioxide) and compounds without known clinical cardiotoxicity (amoxicillin, cetirizine, captopril and aspirin). By evaluating the effects of these compounds on MEA parameters, the assay was mostly able to recapitulate different drug-induced cardiotoxicities, represented by a prolongation of the field potential, changes in beating rate and presence of arrhythmic events in acute (<2 h) or delayed phase ≥24 h, and/or reduction of impedance during the delayed phase (≥24 h). Furthermore, a few reference compounds were tested in hiPSC-CMs using fluorescence- and luminescence-based plate reader assays, confirming the presence or absence of cytotoxic effects, linked to changes of the impedance parameters measured in the MEA assay. Of note, some cardiotoxic effects could not be identified at acute time points (<2 h) but were clearly detected after 24 h, reinforcing the importance of chronic drug evaluation. Discussion: In conclusion, the evaluation of chronic drug-induced cardiotoxicity using a hiPSC-CMs in vitro assay can contribute to the early de-risking of compounds and help optimize the drug development process.
Collapse
Affiliation(s)
- C. Altrocchi
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - K. Van Ammel
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Steemans
- A Division of Janssen Pharmaceutica NV, Cell Health Assessment Group, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Kreir
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - F. Tekle
- A Division of Janssen Pharmaceutica NV, Statistics and Decision Sciences, Global Development, Janssen R&D, Beerse, Belgium
| | - A. Teisman
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - D. J. Gallacher
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - H. R. Lu
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| |
Collapse
|
2
|
Pharmacological characterisation of electrocardiogram J-T peak interval in conscious Guinea pigs. Eur J Pharmacol 2022; 927:175065. [PMID: 35640715 DOI: 10.1016/j.ejphar.2022.175065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Drug-induced human ether-à-go-go-related gene (hERG) channel block and QT interval prolongation increase torsade de pointes (TdP) risk. However, some drugs block hERG channels and prolong QT interval with low TdP risk, likely because they block additional inward currents. We investigated the utility of J-Tpeak interval, a novel biomarker of inward current block and TdP risk, in conscious telemetered guinea pigs. Electrocardiogram parameters were analysed in Hartley guinea pigs orally administered one of eight test compounds (dofetilide, flecainide, nifedipine, quinidine, quinine, ranolazine, sotalol, verapamil) or vehicle alone as controls. Heart rate-corrected QT (QTcX) and J-Tpeak (J-TpeakcX) were calculated to evaluate the relations of QT-RR and J-Tpeak-RR. Dofetilide and sotalol significantly increased ΔQTcX and ΔJ-TpeakcX intervals to similar degrees. Quinidine, quinine and flecainide also increased ΔQTcX and ΔJ-TpeakcX intervals, but the degrees of ΔJ-TpeakcX interval prolongation were shorter than those of ΔQTcX interval prolongation. Ranolazine showed slight increasing trends in ΔQTcX and ΔJ-TpeakcX intervals, but the differences were not significant. Verapamil and nifedipine did not increase the ΔQTcX or ΔJ-TpeakcX intervals. Based on the relations of ΔΔJ-TpeakcX and ΔΔQTcX intervals, dofetilide, sotalol and quinidine were classified as high risk for TdP, quinine, flecainide and ranolazine were classified as intermediate risk and verapamil and nifedipine were classified as low risk. These results supported the usefulness of J-Tpeak interval assessment in conscious guinea pigs for predicting drug-induced balanced block of inward currents and TdP risk in early-stage preclinical studies.
Collapse
|
3
|
Yurre ARD, Silva JDFD, Torres MKDS, Martins EL, Ramos IP, Silva WSFLD, Sarpa JDS, Guedes CCDS, Napoleão TH, Coelho LCBB, Paiva PMG, Medei E. Evaluation of the Cardiac Effects of a Water-Soluble Lectin (Wsmol) from Moringa Oleifera Seeds. Arq Bras Cardiol 2020; 114:1029-1037. [PMID: 32187285 PMCID: PMC8416120 DOI: 10.36660/abc.20190071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/23/2019] [Indexed: 12/26/2022] Open
Abstract
Fundsamento As sementes de Moringa oleifera , que são utilizadas para clarificação de água, contêm uma lectina chamada WSMoL que tem mostrado atividade antibacteriana e imunomoduladora in vitro . Devido ao seu valor nutritivo e potencial terapêutico, as folhas e as sementes dessa árvore são consumidas em algumas comunidades. Algumas lectinas de plantas não são tóxicas para mamíferos, mas tem sido relatado que outras são prejudiciais quando ingeridas ou administradas por outros meios. Objetivo Como um dos passos necessários para determinar a segurança de WSMoL, nós avaliamos os possíveis efeitos cardiotóxicos desta proteína purificada. Métodos Durante 21 dias consecutivos, a WSMoL foi administrada a camundongos por gavagem. Foram investigadas as funções eletrofisiológicas, mecânicas e metabólicas in vivo e ex vivo por meio de registros eletrocardiográficos, ressonância magnética nuclear e respirometria de alta resolução. Resultados O tratamento com WSMoL não induziu alterações nos níveis de glicose no sangue ou peso corporal em comparação com o grupo controle. Adicionalmente, as relações peso cardíaco/peso corporal e peso cardíaco/comprimento tibial estavam semelhantes em ambos os grupos. A ingestão de lectina também não modificou a tolerância à glicose ou resistência à insulina. Não foram observadas alterações nos parâmetros eletrocardiográficos ou na duração do potencial de ação cardíaco. Os corações dos camundongos dos grupos controle e WSMoL mostraram função ventricular esquerda preservada. Além disso, a WSMoL não induziu alterações na função mitocondrial (em todos os casos, p > 0,05). Conclusões A administração de WSMoL demonstrou ter um perfil de segurança cardíaca. Estes resultados contribuem à avaliação de segurança do uso de sementes de M. oleifera para tratar água, visto que essa lectina está presente na preparação empregada por algumas populações com esse fim. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Emiliano Medei
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Shichiri M, Ishida N, Hagihara Y, Yoshida Y, Kume A, Suzuki H. Probucol induces the generation of lipid peroxidation products in erythrocytes and plasma of male cynomolgus macaques. J Clin Biochem Nutr 2018; 64:129-142. [PMID: 30936625 PMCID: PMC6436040 DOI: 10.3164/jcbn.18-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/18/2018] [Indexed: 12/27/2022] Open
Abstract
We previously reported that probucol, a lipid lowering agent, protected mice from malaria infection via depletion in plasma α-tocopherol. The antioxidant α-tocopherol in host circulation is necessary for the malaria parasites to protect themselves from oxidative stress in erythrocytes where high amounts of reactive oxygen species are generated. To assess the potential for the clinical application of probucol as an anti-malarial therapy, it was necessary to determine the effects of probucol by using primate experiments. Here we verified that probucol induces an α-tocopherol decrement in cynomolgus macaque erythrocytes and plasma. After 2 weeks of probucol administration at doses of 200 or 400 mg/kg/day, the α-tocopherol contents in erythrocytes tended to decrease. The contents of hydroxyoctadecadienoic acids and 7β-hydroxycholesterol, peroxidation products derived from linoleic acid and cholesterol, respectively, increased in erythrocytes. On the other hand, plasma α-tocopherol concentration showed a marginal decrement. Plasma lipid peroxidation products were transiently increased in the early stages of probucol administration. No adverse effects were observed throughout the experiment, although the dosage of probucol was higher than the clinical maximum dosage. Considering that malaria proliferates in erythrocytes, probucol-induced disruption of redox homeostasis in erythrocytes could be effective in the inhibition of parasite proliferation.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8562, Japan
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-5555, Japan
| | - Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-5555, Japan
| |
Collapse
|
5
|
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96:214-24. [PMID: 26026976 DOI: 10.1016/j.addr.2015.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.
Collapse
|
6
|
Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection. PLoS One 2015; 10:e0136014. [PMID: 26296197 PMCID: PMC4546625 DOI: 10.1371/journal.pone.0136014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022] Open
Abstract
The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction.
Collapse
|
7
|
Izawa S, Yamaoka M, Deguchi T. Effect of urinary excretion on the bladder tissue distribution of fluoroquinolones in rats. J Infect Chemother 2015; 21:290-5. [PMID: 25640533 DOI: 10.1016/j.jiac.2014.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/21/2014] [Accepted: 12/21/2014] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to evaluate which of blood or urine has the greater effect on bladder tissue concentrations of fluoroquinolones important for the treatment of urinary tract infections by measuring concentrations of fluoroquinolones in the vesical tissue (chemically and immunohistochemically) and intravesical space (chemically). Thirty-minute incubation of isolated rat bladders with fluoroquinolones showed only a 1.9-fold difference in transferability among norfloxacin, levofloxacin, ciprofloxacin and sparfloxacin. Intravesical instillation of norfloxacin and sparfloxacin in rats yielded similar vesical tissue distributions. Thus, there were no large differences in vesical tissue transfer among the four fluoroquinolones. The bladder tissue/plasma concentration ratios of norfloxacin (high urinary excretion-type) and sparfloxacin (low urinary excretion-type) at 1 h after a single oral dose (10 mg/kg) to rats were 15.4 and 1.3, respectively. The bladder tissue/plasma concentration ratios of norfloxacin after an intravenous injection (10 mg/kg) to ureter-catheterized and sham-operated rats were 1.36 and 57.8. Thus the bladder tissue distribution was significantly higher in the urine-exposed bladder. Immunohistochemical examination of the vesical tissue localization of norfloxacin in rats given a single intravenous dose revealed the presence of the drug-positive image in the cytoplasm of surface layer cells (both in umbrella and cover cells) of the bladder transitional epithelium. In conclusion, the results suggest that norfloxacin and other fluoroquinolones are excreted into urine and then transferred to the surface layer of the bladder transitional epithelium. Therefore, the urine levels have a greater effect on the vesicle tissue distribution of fluoroquinolones than the plasma levels in rats.
Collapse
Affiliation(s)
- Shigeru Izawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; Development Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Tochigi 329-0114, Japan.
| | - Makiko Yamaoka
- Development Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Tochigi 329-0114, Japan
| | - Takashi Deguchi
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Su J, Chang C, Xiang Q, Zhou ZW, Luo R, Yang L, He ZX, Yang H, Li J, Bei Y, Xu J, Zhang M, Zhang Q, Su Z, Huang Y, Pang J, Zhou SF. Xyloketal B, a marine compound, acts on a network of molecular proteins and regulates the activity and expression of rat cytochrome P450 3a: a bioinformatic and animal study. Drug Des Devel Ther 2014; 8:2555-602. [PMID: 25548518 PMCID: PMC4271727 DOI: 10.2147/dddt.s73476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural compounds are becoming popular for the treatment of illnesses and health promotion, but the mechanisms of action and safety profiles are often unknown. Xyloketal B (XKB) is a novel marine compound isolated from the mangrove fungus Xylaria sp., with potent antioxidative, neuroprotective, and cardioprotective effects. However, its molecular targets and effects on drug-metabolizing enzymes are unknown. This study aimed to investigate the potential molecular targets of XKB using bioinformatic approaches and to examine the effect of XKB on the expression and activity of rat cytochrome P450 3a (Cyp3a) subfamily members using midazolam as a model probe. DDI-CPI, a server that can predict drug–drug interactions via the chemical–protein interactome, was employed to predict the targets of XKB, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the pathways of the predicted targets of XKB. Homology modeling was performed using the Discovery Studio program 3.1. The activity and expression of rat hepatic Cyp3a were examined after the rats were treated with XKB at 7 and 14 mg/kg for 8 consecutive days. Rat plasma concentrations of midazolam and its metabolite 1′-OH-midazolam were determined using a validated high-performance liquid chromatographic method. Bioinformatic analysis showed that there were over 324 functional proteins and 61 related signaling pathways that were potentially regulated by XKB. A molecular docking study showed that XKB bound to the active site of human cytochrome P450 3A4 and rat Cyp3a2 homology model via the formation of hydrogen bonds. The in vivo study showed that oral administration of XKB at 14 mg/kg to rats for 8 days significantly increased the area under the plasma concentration-time curve (AUC) of midazolam, with a concomitant decrease in the plasma clearance and AUC ratio of 1′-OH-midazolam over midazolam. Further, oral administration of 14 mg/kg XKB for 8 days markedly reduced the activity and expression of hepatic Cyp3a in rats. Taken together, the results show that XKB could regulate networks of molecular proteins and related signaling pathways and that XKB downregulated hepatic Cyp3a in rats. XKB might cause drug interactions through modulation of the activity and expression of Cyp3a members. More studies are warranted to confirm the mechanisms of action of XKB and to investigate the underlying mechanism for the regulating effect of XKB on Cyp3a subfamily members.
Collapse
Affiliation(s)
- Junhui Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China ; Department of Pharmacy, Jinan University, Guangzhou, People's Republic of China ; The People's Hospital of Shenzhen City, Shenzhen, People's Republic of China
| | - Cui Chang
- The People's Hospital of Shenzhen City, Shenzhen, People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China ; Department of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Rong Luo
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lun Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Hongtu Yang
- Department of Pharmacy, Jinan University, Guangzhou, People's Republic of China ; The People's Hospital of Shenzhen City, Shenzhen, People's Republic of China
| | - Jianan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yu Bei
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jinmei Xu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China ; Department of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Minjing Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jiyan Pang
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| |
Collapse
|
9
|
Nogawa H, Kawai T. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. Eur J Pharmacol 2014; 741:336-9. [DOI: 10.1016/j.ejphar.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
|