1
|
Mamedov VA, Galimullina VR, Qu ZW, Zhu H, Syakaev VV, Shamsutdinova LR, Sergeev MA, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. AlCl 3-Promoted Intramolecular Indolinone-Quinolone Rearrangement of Spiro[indoline-3,2'-quinoxaline]-2,3'-diones: Easy Access to Quinolino[3,4- b]quinoxalin-6-ones. J Org Chem 2023. [PMID: 38151045 DOI: 10.1021/acs.joc.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A facile and direct intramolecular indolinone-quinolone rearrangement was developed for the synthesis of quinolino[3,4-b]quinoxalin-6-ones from spiro[indoline-3,2'-quinoxaline]-2,3'-diones, which are readily available with use of isatines, malononitrile, and 1,2-phenylenediamines under quite mild conditions. This efficient approach provides excellent yields and could potentially be used for the construction of a diverse library of quinolino[3,4-b]quinoxalin-6-ones for high-throughput screening in medicinal chemistry. The reaction mechanism is explored by extensive DFT calculations.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Mikhail A Sergeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
2
|
Glatfelter GC, Partilla JS, Baumann MH. Structure-activity relationships for 5F-MDMB-PICA and its 5F-pentylindole analogs to induce cannabinoid-like effects in mice. Neuropsychopharmacology 2022; 47:924-932. [PMID: 34802041 PMCID: PMC8882184 DOI: 10.1038/s41386-021-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances found on recreational drug markets worldwide. The indole-containing compound, 5F-MDMB-PICA, is a popular SCRA associated with serious medical consequences, including overdose and hospitalizations. In vitro studies reveal that 5F-MDMB-PICA is a potent agonist at cannabinoid type 1 receptors (CB1), but little information exists regarding in vivo pharmacology of the drug. To this end, we examined the in vitro and in vivo cannabinoid-like effects produced by 5F-MDMB-PICA and related 5F-pentylindole analogs with differing composition of the head group moiety (i.e., 5F-NNEI, 5F-SDB-006, 5F-CUMYL-PICA, 5F-MMB-PICA). In mouse brain membranes, 5F-MDMB-PICA and its analogs inhibited binding to [3H]rimonabant-labeled CB1 and displayed agonist actions in [35S]GTPγS functional assays. 5F-MDMB-PICA exhibited the highest CB1 affinity (Ki = 1.24 nM) and functional potency (EC50 = 1.46 nM), but head group composition markedly influenced activity in both assays. For example, the 3,3-dimethylbutanoate (5F-MDMB-PICA) and cumyl (5F-CUMYL-PICA) head groups engendered high CB1 affinity and potency, whereas a benzyl (5F-SDB-006) head group did not. In C57BL/6J mice, all 5F-pentylindole SCRAs produced dose- and time-dependent hypothermia, catalepsy, and analgesia that were reversed by rimonabant, indicating CB1 involvement. In vitro Ki and EC50 values were positively correlated with in vivo ED50 potency estimates. Our findings demonstrate that 5F-MDMB-PICA is a potent SCRA, and subtle alterations to head group composition can have profound influence on pharmacological effects at CB1. Importantly, measures of CB1 binding and efficacy in mouse brain tissue seem to accurately predict in vivo drug potency in this species.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - John S. Partilla
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| | - Michael H. Baumann
- grid.420090.f0000 0004 0533 7147Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD USA
| |
Collapse
|
3
|
Shen W, Li J, Zhang C, Shi M, Zhang J. Copper, Silver and Sodium Salt-Mediated Quaternization by Arylation: Syntheses of N-Heterocyclic Carbene Precursors and 6-H-Phenanthridine Derivatives. Chem Asian J 2016; 11:1883-6. [DOI: 10.1002/asia.201600563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Wenqi Shen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry&Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Jing Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry&Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Caiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry&Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry&Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Road Shanghai 200032 China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry&Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
4
|
Sharma C, Sadek B, Goyal SN, Sinha S, Kamal MA, Ojha S. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:238482. [PMID: 26664449 PMCID: PMC4664820 DOI: 10.1155/2015/238482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Mahrastra 425405, India
| | - Satyesh Sinha
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
5
|
Chen WL, Chen CY, Chen YF, Hsieh JC. Hydride-induced anionic cyclization: an efficient method for the synthesis of 6-H-phenanthridines via a transition-metal-free process. Org Lett 2015; 17:1613-6. [PMID: 25763919 DOI: 10.1021/acs.orglett.5b00544] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel procedure for hydride-induced anionic cyclization has been developed. It includes the reduction of a biaryl bromo-nitrile with a nucleophilic aromatic substitution (S(N)Ar). A range of polysubstituted 6-H-phenanthridines were so obtained in moderate to good yield with good substrate tolerance. This method involves a concise transition-metal-free process and was applied to synthesize natural alkaloids.
Collapse
Affiliation(s)
- Wei-Lin Chen
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Chun-Yuan Chen
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Yan-Fu Chen
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|