1
|
Li X, Han P, Liu M, Li X, Xue S. Effect of Ganglioside combined with pramexol in the treatment of Parkinson's disease and its effect on motor function. J Med Biochem 2023; 42:505-512. [PMID: 37790213 PMCID: PMC10543131 DOI: 10.5937/jomb0-42550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 10/05/2023] Open
Abstract
Background This study was aimed to evaluate the efficacy of pramipexole combined with ganglioside for PD treatment and pramipexole monotherapy, so as to provide reference for clinical practice. Methods 61 PD patients selected from June 2019 to December 2020 at our hospital were divided into two groups. The control group (n=31) was given dopasizide oral treatment, and the treatment group (n=30) was given ganglioside combined with pramipexole. The clinical efficacy, adverse reactions, motor function scores, UPDRS scores, PDQ-39 scale scores, TNF-a levels, and related serum factor levels were measured in this study.
Collapse
Affiliation(s)
- Xinna Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Department of Pathology, Yantai, China
| | - Peihai Han
- Traditional Chinese Medical Hospital of Huangdao District, Encephalopathy Department, Qingdao, China
| | - Mengjiao Liu
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Department of Rehabilitation Medicine, Qingdao, China
| | - Xiaowen Li
- Zhangqiu District People's Hospital, Department of Endoscopy Room, Jinan, China
| | - Shuai Xue
- Shandong University, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Health Care Department, Qingdao, Shandong, China
| |
Collapse
|
2
|
From the tyrosine hydroxylase hypothesis of Parkinson's disease to modern strategies: a short historical overview. J Neural Transm (Vienna) 2022; 129:487-495. [PMID: 35460433 PMCID: PMC9188506 DOI: 10.1007/s00702-022-02488-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
A time span of 60 years covers the detection of catecholamines in the brain, their function in movement and correlation to Parkinson’s disease (PD). The clinical findings that orally given l-DOPA can alleviate or even prevent akinesia gave great hope for the treatment of PD. Attention focused on the role of tyrosine hydroxylase (TH) as the rate-limiting enzyme in the formation of catecholamines. It became evident that the enzyme driven formation is lowered in PD. Such results could only be obtained from studying human brain samples demonstrating the necessity for human brain banks. Originally, a TH enzyme deficiency was suspected in PD. Studies were conducted on the enzyme properties: its induction and turnover, the complex regulation starting with cofactor requirements as tetrahydrobiopterin and ferrous iron, and the necessity for phosphorylation for activity as well as inhibition by toxins or regulatory feedback inhibition by catecholamines. In the course of time, it became evident that neurodegeneration and cell death of dopaminergic neurons is the actual pathological process and the decrease of TH a cophenomenon. Nevertheless, TH immunochemistry has ever since been a valuable tool to study neuronal pathways, neurodegeneration in various animal models of neurotoxicity and cell cultures, which have been used as well to test potential neuroprotective strategies.
Collapse
|
3
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
4
|
Yang P, Knight WC, Li H, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol 2020; 8:224-237. [PMID: 33348472 PMCID: PMC7818081 DOI: 10.1002/acn3.51274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Dopamine D2‐like receptors – mainly dopamine D2 receptors (D2R) and dopamine D3 receptors (D3R) – are believed to be greatly involved in the pathology of Parkinson disease (PD) progression. However, these receptors have not been precisely examined in PD patients. Our aim was to quantitatively calculate the exact densities of dopamine D1 receptors (D1R), D2R, and D3R in control, Alzheimer disease (AD), and Lewy body disease (LBD) patients (including PD, Dementia with Lewy bodies, and Parkinson disease dementia); and analyze the relationship between dopamine receptors and clinical PD manifestations. Methods We analyzed the densities of D1R, D2R, and D3R in the striatum and substantia nigra (SN) using a novel quantitative autoradiography procedure previously developed by our group. We also examined the expression of D2R and D3R mRNA in the striatum by in situ hybridization. Results The results showed that although no differences of striatal D1R were found among all groups; D2R was significantly decreased in the striatum of PD patients when compared with control and AD patients. Some clinical manifestations: age of onset, PD stage, dopamine responsiveness, and survival time after onset; showed a better correlation with striatal D1R + D3R densities combined compared to D1R or D3R alone. Interpretation There is a possibility that we may infer the results in diagnosis, treatment, and prognosis of PD by detecting D1R + D3R as opposed to using dopamine D1 or D3 receptors alone. This is especially true for elderly patients with low D2R expression as is common in this disease.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - William C Knight
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Huifangjie Li
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Yingqiu Guo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
5
|
Atsushi T, Tamano H. New insight into Parkinson's disease pathogenesis from reactive oxygen species-mediated extracellular Zn 2+ influx. J Trace Elem Med Biol 2020; 61:126545. [PMID: 32438294 DOI: 10.1016/j.jtemb.2020.126545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the common neurodegenerative disorder in the elderly characterized by motor symptoms such as tremors, which is caused by selective loss of nigral dopaminergic neurons. Oxidative stress induced by the auto-oxidation of dopamine has been implicated as a key cause of the selective loss of dopaminergic neurons. METHODS To understand the selective loss of nigral dopaminergic neurons, the PD pathogenesis is reviewed focused on paraquat (PQ) and 6-hydroxydopamine (6-OHDA)-induced PD in rats. RESULTS Reactive oxygen species (ROS), which are produced by PQ and 6-OHDA, are retrogradely transported to presynaptic glutamatergic neuron terminals. ROS activate presynaptic transient receptor potential melastatin 2 (TRPM2) cation channels and induce extracellular glutamate accumulation in the substantia nigra pars compacta (SNpc), followed by age-related intracellular Zn2+ dysregulation. Loss of nigral dopaminergic neurons is accelerated by age-related intracellular Zn2+ dysregulation in the SNpc of rat PD models. The intracellular Zn2+ dysregulation in nigral dopaminergic neurons is linked with the rapid influx of extracellular Zn2+ via postsynaptic AMPA receptor activation, suggesting that PQ- and 6-OHDA-induced pathogenesis is linked with age-related intracellular Zn2+ dysregulation in the SNpc. Postsynaptic TRPM2 channels may be also involved in intracellular Zn2+ dysregulation in the SNpc. CONCLUSION A novel mechanism of nigral dopaminergic degeneration, in which ROS induce rapid intracellular Zn2+ dysregulation, figures out the PD pathogenesis induced by PQ and 6-OHDA in rats. This review deals with new insight into PD pathogenesis from ROS-mediated extracellular Zn2+ influx and its proposed defense strategy.
Collapse
Affiliation(s)
- Takeda Atsushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Chalorak P, Dharmasaroja P, Meemon K. Downregulation of eEF1A/EFT3-4 Enhances Dopaminergic Neurodegeneration After 6-OHDA Exposure in C. elegans Model. Front Neurosci 2020; 14:303. [PMID: 32425742 PMCID: PMC7212436 DOI: 10.3389/fnins.2020.00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein protein and selective death of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Although the molecular pathogenesis of PD is not completely understood, a recent study has reported that eukaryotic translation elongation factor 1 alpha (eEF1A) declined in the PD-affected brain. Therefore, the roles of eEF1A1 and eEF1A2 in the prevention of DA neuronal cell death in PD are aimed to be investigated. Herein, by using Caenorhabditis elegans as a PD model, we investigated the role of eft-3/eft-4, the worm homolog of eEF1A1/eEF1A2, on 6-hydroxydopamine (6-OHDA)-induced DA neuron degeneration. Our results demonstrated that the expressions of eft-3 and eft-4 were decreased in the 6-OHDA-induced worms. RNA interference (RNAi) of eft-3 and eft-4 resulted in dramatic exacerbation of DA neurodegeneration induced by 6-OHDA, as well as aggravated the food-sensing behavior, ethanol avoidance, and decreased lifespan when compared with only 6-OHDA-induced worms. Moreover, downregulation of eft-3/4 in 6-OHDA-induced worms suppressed the expression of the anti-apoptotic genes, including PI3K/age-1, PDK-1/pdk-1, mTOR/let-363, and AKT-1,2/akt-1,2, promoting the expression of apoptotic genes such as BH3/egl-1 and Caspase-9/ced-3. Collectively, these findings indicate that eEF1A plays an important role in the 6-OHDA-induced neurodegeneration through the phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt)/mammalian target of rapamycin (mTOR) pathway and that eEF1A isoforms may be a novel and effective pro-survival factor in protective DA neurons against toxin-induced neuronal death.
Collapse
Affiliation(s)
- Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Abstract
Rotigotine (Neupro®), a non-ergolinic dopamine agonist (DA), is administered once daily via a transdermal patch (TP) that delivers the drug over a 24-h period. In the EU, the rotigotine TP is approved as monotherapy for the treatment of early Parkinson's disease (PD) and as combination therapy with levodopa throughout the course of the disease. It is also approved for the treatment of PD in numerous other countries, including Australia, the USA, China and Japan. Rotigotine TP effectively improved motor and overall functioning in clinical trials in Caucasian and Asian patients with early PD (as monotherapy) or advanced PD (in combination with levodopa); treatment benefits appeared to be maintained in open-label extensions that followed patients for up to 6 years. Rotigotine TP was not consistently non-inferior to ropinirole and pramipexole in studies that included these oral non-ergolinic DAs as active comparators. Rotigotine TP variously improved some non-motor symptoms of PD, in particular sleep disturbances and health-related quality of life (HRQOL), based on findings from individual studies and/or a meta-analysis. Rotigotine TP was generally well tolerated, with an adverse event profile characterized by adverse events typical of dopaminergic stimulation and transdermal patch application. Available for more than a decade, rotigotine TP is a well-established, once-daily DA formulation for use in the short- and longer-term treatment of PD. It offers a convenient alternative when non-oral administration of medication is preferred and may be particularly useful in patients with gastrointestinal disturbances that reduce the suitability of oral medication.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
9
|
Tamano H, Morioka H, Nishio R, Takeuchi A, Takeda A. Blockade of Rapid Influx of Extracellular Zn 2+ into Nigral Dopaminergic Neurons Overcomes Paraquat-Induced Parkinson's Disease in Rats. Mol Neurobiol 2018; 56:4539-4548. [PMID: 30341553 DOI: 10.1007/s12035-018-1398-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/14/2018] [Indexed: 02/02/2023]
Abstract
The herbicide paraquat (PQ) has been reported to enhance the risk of developing Parkinson's disease (PD) from epidemiological studies. PQ-induced reactive oxygen species (ROS) are linked with a selective loss of nigrostriatal dopaminergic neurons. Here, we first report a unique mechanism of nigrostriatal dopaminergic degeneration, in which rapid intracellular Zn2+ dysregulation via PQ-induced ROS production causes PD in rats. When the substantia nigra pars compacta (SNpc) of rats was perfused with PQ, extracellular concentrations of glutamate and Zn2+ were increased and decreased, respectively, in the SNpc. These changes were ameliorated by co-perfusion with Trolox, an antioxidative agent. In in vitro slice experiments, PQ rapidly increased extracellular Zn2+ influx via AMPA receptor activation. Both loss of nigrostriatal dopaminergic neurons and increase in turning behavior in response to apomorphine were markedly reduced by coinjection of PQ and intracellular Zn2+ chelator, i.e., ZnAF-2DA into the SNpc. Furthermore, loss of nigrostriatal dopaminergic neurons induced with a low dose of PQ, which did not induce any behavioral abnormality, was completely blocked by coinjection of ZnAF-2DA. The present study indicates that rapid influx of extracellular Zn2+ into dopaminergic neurons via AMPA receptor activation, which is initially induced by PQ-mediated ROS production in the SNpc, induces nigrostriatal dopaminergic degeneration, resulting in PQ-induced PD in rats. Intracellular Zn2+ dysregulation in dopaminergic neurons is the cause of PQ-induced pathogenesis in the SNpc, and the block of intracellular Zn2+ toxicity leads to defending PQ-induced pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Morioka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Azusa Takeuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Tamano H, Morioka H, Nishio R, Takeuchi A, Takeda A. AMPA-induced extracellular Zn 2+ influx into nigral dopaminergic neurons causes movement disorder in rats. Neurotoxicology 2018; 69:23-28. [PMID: 30176255 DOI: 10.1016/j.neuro.2018.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
On the basis of the findings that the rapid influx of extracellular Zn2+ into nigral dopaminergic neurons causes dopaminergic neurodegeneration, here we report that AMPA causes movement disorder in rats. AMPA markedly increased turning behavior in response to apomorphine 1 and 2 weeks after AMPA injection into the substantia nigra pars compacta (SNpc), while AMPA-induced movement disorder was suppressed by co-injection of intracellular Zn2+ chelators, i.e., ZnAF-2DA and TPEN, suggesting that AMPA-induced movement disorder is due to intracellular Zn2+ dysregulation. Furthermore, AMPA markedly induced loss of nigrostriatal dopaminergic neurons 2 weeks after AMPA injection into the SNpc, while AMPA-induced neurodegeneration was also suppressed in the SNpc and the striatum by co-injection of ZnAF-2DA and TPEN. AMPA rapidly increased nigral intracellular Zn2+ after AMPA injection into the SNpc and this increase was blocked by co-injection of TPEN. These results indicate that AMPA receptor activation rapidly increases influx of extracellular Zn2+ into nigral dopaminergic neurons and causes nigrostriatal dopaminergic neurodegeneration, resulting in movement disorder in rats. The evidence that AMPA-induced intracellular Zn2+ dysregulation causes movement disorder via nigrostriatal dopaminergic neurodegeneration suggests that AMPA receptors, probably Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors are potential targets for overcoming Parkinson's syndrome.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Morioka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Azusa Takeuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
11
|
Extracellular Zn 2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats. Mol Neurobiol 2018; 56:435-443. [PMID: 29705946 DOI: 10.1007/s12035-018-1075-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn2+ but not in intracellular Ca2+. These results suggest that the rapid influx of extracellular Zn2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.
Collapse
|
12
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 2017; 6:20. [PMID: 28702179 PMCID: PMC5504572 DOI: 10.1186/s40035-017-0088-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Collapse
Affiliation(s)
- Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| | - Joseph Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
14
|
Kim M, Lee S, Cho J, Kim G, Won C. Dopamine D3 receptor-modulated neuroprotective effects of lisuride. Neuropharmacology 2017; 117:14-20. [DOI: 10.1016/j.neuropharm.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
|
15
|
Valproic Acid Protects Primary Dopamine Neurons from MPP +-Induced Neurotoxicity: Involvement of GSK3 β Phosphorylation by Akt and ERK through the Mitochondrial Intrinsic Apoptotic Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8124501. [PMID: 28421199 PMCID: PMC5380829 DOI: 10.1155/2017/8124501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Valproic acid (VPA), a drug widely used to treat manic disorder and epilepsy, has recently shown neuroprotective effects in several neurological diseases, particularly in Parkinson's disease (PD). The goal of the present study was to confirm VPA's dose-dependent neuroprotective propensities in the MPP+ model of PD in primary dopamine (DA) neurons and to investigate the underlying molecular mechanisms using specific mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase- (PI3K-) Akt signaling inhibitors. VPA reversed MPP+-induced mitochondrial apoptosis and counteracted MPP+-induced extracellular signal-regulated kinase (ERK) and Akt repression and inhibited glycogen synthase kinase 3β (GSK3β) activation through induction of GSK3β phosphorylation. Moreover, inhibitors of the PI3K and MAPK pathways abolished GSK3β phosphorylation and diminished the VPA-induced neuroprotective effect. These findings indicated that VPA's neuroprotective effect in the MPP+-model of PD is associated with GSK3β phosphorylation via Akt and ERK activation in the mitochondrial intrinsic apoptotic pathway. Thus, VPA may be a promising therapeutic candidate for clinical treatment of PD.
Collapse
|
16
|
Xu H, Jiang H, Xie J. New Insights into the Crosstalk between NMDARs and Iron: Implications for Understanding Pathology of Neurological Diseases. Front Mol Neurosci 2017; 10:71. [PMID: 28360837 PMCID: PMC5352910 DOI: 10.3389/fnmol.2017.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Both iron dyshomeostasis and N-methyl-D-aspartate receptors (NMDARs)-mediated neurotoxicity have been shown to have an important role in neurological diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Evidence proved that activation of NMDARs could promote iron overload and iron-induced neurotoxicity by enhancing iron importer divalent metal transporter 1 (DMT1)-mediated iron uptake and iron releasing from lysosome. Also, iron overload could regulate NMDARs-mediated synaptic transmission. This indicates that there might be a possible relationship between iron and activation of NMDARs in neurological diseases. Understanding this interaction between iron and activation of NMDARs may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for these diseases. Therefore, in this review article, we will describe the dysfunction of iron metabolism and NMDARs in neurological diseases including PD and AD, and summarize the new insight into the mechanisms underlying the interaction between iron and activation of NMDARs.
Collapse
Affiliation(s)
- Huamin Xu
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao UniversityQingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao UniversityQingdao, China
| | - Hong Jiang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao UniversityQingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao UniversityQingdao, China
| | - Junxia Xie
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao UniversityQingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao UniversityQingdao, China
| |
Collapse
|
17
|
Olatunji OJ, Feng Y, Olatunji OO, Tang J, Wei Y, Ouyang Z, Su Z. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage. Carbohydr Polym 2016; 153:187-195. [DOI: 10.1016/j.carbpol.2016.06.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
|
18
|
Ke J, Jing M. Analysis of treatment effect of urinary kallidinogenase combined with edaravone on massive cerebral infarction. Biomed Rep 2016; 5:155-158. [PMID: 27446533 PMCID: PMC4950744 DOI: 10.3892/br.2016.692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the study was to investigate the clinical effect of urinary kallidinogenase combined with edaravone in the treatment of massive cerebral infarction. A total of 58 patients with massive cerebral infarction were admitted to hospital between January 2013 and January 2014. There were 34 male and 24 female patients. The patients were randomly divided into the observation and control groups (n=29 cases per group). The patients in the control group received edaravone treatment, while patients in the observation group were treated with urinary kallidinogenase and edaravone. The clinical effects of the two groups were then compared. The results showed that the National Institutes of Health Stroke Scale score and serum C-reactive protein level of the patients in the two groups were significantly decreased following treatment. The decreased degree in the observation group was significantly smaller than that in the control group. The difference was statistically significant [(11.03±3.75) vs. (16.58±7.43) scores, P<0.05; (9.88±4.82) vs. (11.98±4.69) mmol/l, P<0.05]. The serum levels of vascular endothelial growth factor were significantly increased in patients of the two groups after treatment. The increased degree in the observation group was significantly higher than that in the control group. The difference was statistically significant [(268.51±77.34) vs. (188.82±57.33) ng/l, P<0.05]. The total effective rate of the observation group was significantly higher than that of the control group and the difference was statistically significant (89.66 vs. 62.07%, P<0.05). In conclusion, urinary kallidinogenase combined with edaravone treatment has a certain clinical curative effect on massive cerebral infarction.
Collapse
Affiliation(s)
- Jiang Ke
- Department of Neurology, East People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Mou Jing
- Department of Cardiology, Xuzhou City Center Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
19
|
Roussotte FF, Gutman BA, Hibar DP, Madsen SK, Narr KL, Thompson PM. Carriers of a common variant in the dopamine transporter gene have greater dementia risk, cognitive decline, and faster ventricular expansion. Alzheimers Dement 2015; 11:1153-62. [PMID: 25496873 PMCID: PMC4465053 DOI: 10.1016/j.jalz.2014.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/19/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Genetic variants in DAT1, the gene encoding the dopamine transporter (DAT) protein, have been implicated in many brain disorders. In a recent case-control study of Alzheimer's disease (AD), a regulatory polymorphism in DAT1 showed a significant association with the clinical stages of dementia. METHODS We tested whether this variant was associated with increased AD risk, and with measures of cognitive decline and longitudinal ventricular expansion, in a large sample of elderly participants with genetic, neurocognitive, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. RESULTS The minor allele-previously linked with increased DAT expression in vitro-was more common in AD patients than in both individuals with mild cognitive impairment and healthy elderly controls. The same allele was also associated with poorer cognitive performance and faster ventricular expansion, independently of diagnosis. DISCUSSION These results may be due to reduced dopaminergic transmission in carriers of the DAT1 mutation.
Collapse
Affiliation(s)
- Florence F Roussotte
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Boris A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derrek P Hibar
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah K Madsen
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Salum C, Schmidt F, Michel PP, Del-Bel E, Raisman-Vozari R. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons. Neurotox Res 2015; 29:92-104. [DOI: 10.1007/s12640-015-9562-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
|
21
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
22
|
Timmermann L, Asgharnejad M, Boroojerdi B, Dohin E, Woltering F, Elmer LW. Impact of 6-month earlier versus postponed initiation of rotigotine on long-term outcome: post hoc analysis of patients with early Parkinson's disease with mild symptom severity. Expert Opin Pharmacother 2015; 16:1423-33. [PMID: 25997442 DOI: 10.1517/14656566.2015.1049597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Investigate impact of 6-month earlier versus postponed initiation of rotigotine in patients with early Parkinson's disease (PD) with mild symptom severity. BACKGROUND Long-term benefit of rotigotine in early-PD has been demonstrated: SP702 (NCT00594165) and SP716 (NCT00599196) were long-term, open-label extensions of double-blind, placebo-controlled studies of 6-month maintenance; rotigotine was well tolerated for up to 6 years, and demonstrated efficacy (Unified Parkinson's Disease Rating Scale [UPDRS] II + III below baseline) for ∼ 2 years (SP702) and ∼ 4 years (SP716). METHODS Post hoc analysis of patients at Hoehn and Yahr 1-2; groups defined by treatment received in 6-month double-blind studies: 'Rotigotine-Rotigotine' received rotigotine (n = 221), 'Placebo-Rotigotine' received placebo (n = 125). RESULTS At the start of open-label rotigotine maintenance, UPDRS II + III mean ± SD change from double-blind baseline was: -8.5 ± 10.6 'Rotigotine-Rotigotine', -7.7 ± 9.0 'Placebo-Rotigotine.' After this initial improvement scores gradually increased: It took ∼ 45 months for mean scores to cross baseline in 'Rotigotine-Rotigotine', and ∼ 21 months in 'Placebo-Rotigotine.' At the time mean UPDRS II + III had crossed baseline in 'Placebo-Rotigotine' (open-label week 84; ∼ 21 months), treatment difference (LS-mean) to 'Rotigotine-Rotigotine' change from baseline was -3.89 (95% CI -6.94, -0.84); p = 0.013. CONCLUSIONS In this post hoc analysis, 6-month earlier initiation of rotigotine resulted in slower return to baseline mean UPDRS II + III; initiation of rotigotine in patients with minimal/no functional disability or impairment may lead to an extended benefit.
Collapse
Affiliation(s)
- Lars Timmermann
- University Hospital Cologne, Department of Neurology , Cologne , Germany +49 221 478 7494 ; +49 221 478 87512 ;
| | | | | | | | | | | |
Collapse
|
23
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
24
|
GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 2014; 127:70-81. [PMID: 25312503 DOI: 10.1016/j.pbb.2014.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022]
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS) and is directly and indirectly involved in a variety of brain functions. Glutamate is released in the synaptic cleft at a particular concentration that further activates the various glutaminergic receptors. This concentration of glutamate in the synapse is maintained by either glutamine synthetase or excitatory amino acid proteins which reuptake the excessive glutamate from the synapse and named as excitatory amino acid transporters (EAATs). Out of all the subtypes GLT-1 (glutamate transporter 1) is abundantly distributed in the CNS. Down-regulation of GLT-1 is reported in various neurological diseases such as, epilepsy, stroke, Alzheimer's disease and movement disorders. Therefore, positive modulators of GLT-1 which up-regulate the GLT-1 expression can serve as a potential target for the treatment of neurological disorders. GLT-1 translational activators such as ceftriaxone are found to have significant protective effects in ALS and epilepsy animal models, suggesting that this translational activation approach works well in rodents and that these compounds are worth further pursuit for various neurological disorders. This drug is currently in human clinical trials for ALS. In addition, a thorough understanding of the mechanisms underlying translational regulation of GLT-1, such as identifying the molecular targets of the compounds, signaling pathways involved in the regulation, and translational activation processes, is very important for this novel drug-development effort. This review mainly emphasizes the role of glutamate and its transporter, GLT-1 subtype in excitotoxicity. Further, recent reports on GLT-1 transporters for the treatment of various neurological diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders are also explained.
Collapse
|