1
|
Zhang L, Wang T, Shen Y, Luo L, Xu G, Xie L. Increased Plasma Homocysteine Levels Are Associated with Left Ventricular Hypertrophy in Hypertensive Patients with Normal Renal Function. Kidney Blood Press Res 2023; 48:277-286. [PMID: 36996765 DOI: 10.1159/000529903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023] Open
Abstract
INTRODUCTION Renal function has an important bearing on plasma homocysteine levels. Plasma homocysteine is related to left ventricular hypertrophy (LVH). However, it remains unclear whether the association between plasma homocysteine levels and LVH is influenced by renal function. This study aimed to investigate relationships among left ventricular mass index (LVMI), plasma homocysteine levels, and renal function in a population from southern China. METHODS A cross-sectional study was performed in 2,464 patients from June 2016 to July 2021. Patients were divided into three groups based on gender-specific tertiles of homocysteine levels. LVMI ≥115 g/m2 for man or ≥95 g/m2 for woman was defined as LVH. RESULTS LVMI and the percentage of LVH were increased, while estimated glomerular filtration rate (eGFR) was decreased with the increase in homocysteine levels, both significantly. Multivariate stepwise regression analysis showed that eGFR and homocysteine were independently associated with LVMI in patients with hypertension. No correlation was observed between homocysteine and LVMI in patients without hypertension. Stratified by eGFR, further analysis confirmed homocysteine was independently associated with LVMI (β = 0.126, t = 4.333, p < 0.001) only in hypertensive patients with eGFR ≥90 mL/(min·1.73 m2), not with 60≤ eGFR <90 mL/(min·1.73 m2). Multivariate logistic regression indicated that in hypertensive patients with eGFR ≥90 mL/(min·1.73 m2), the patients in high tertile of homocysteine levels had a nearly twofold increased risk of occurring LVH compared with those in low tertile (high tertile: OR = 2.780, 95% CI: 1.945-3.975, p < 0.001). CONCLUSION Plasma homocysteine levels were independently associated with LVMI in hypertensive patients with normal eGFR.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of General Practice, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,
| | - Tingjun Wang
- Department of General Practice, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yihua Shen
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li Luo
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guoyan Xu
- Department of General Practice, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of General Practice, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Research Center for Geriatric Hypertension Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of International Medical Services, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
3
|
Xiao G, Zhuang W, Wang T, Lian G, Luo L, Ye C, Wang H, Xie L. Transcriptomic analysis identifies Toll-like and Nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med 2020; 24:11409-11421. [PMID: 32860486 PMCID: PMC7576255 DOI: 10.1111/jcmm.15745] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation and immunity play a causal role in the pathogenesis of pulmonary vascular remodelling and pulmonary arterial hypertension (PAH). However, the pathways and mechanisms by which inflammation and immunity contribute to pulmonary vascular remodelling remain unknown. RNA sequencing was used to analyse the transcriptome in control and rats injected with monocrotaline (MCT) for various weeks. Using the transcriptional profiling of MCT‐induced PAH coupled with bioinformatics analysis, we clustered the differentially expressed genes (DEGs) and chose the increased expression patterns associated with inflammatory and immune response. We found the enrichment of Toll‐like receptor (TLR) and Nod‐like receptor (NLR) pathways and identified NF‐κB‐mediated inflammatory and immune profiling in MCT‐induced PAH. Pathway‐based data integration and visualization showed the dysregulated TLR and NLR pathways, including increased expression of TLR2 and NLRP3, and their downstream molecules. Further analysis revealed that the activation of TLR and NLR pathways was associated with up‐regulation of damage‐associated molecular patterns (DAMPs) and RIPK3‐mediated necroptosis was involved in the generation of DAMPs in MCT‐induced PAH. Collectively, we identify RIPK3‐mediated necroptosis and its triggered TLR and NLR pathways in the progression of pulmonary vascular remodelling, thus providing novel insights into the mechanisms underlying inflammation and immunity in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Genfa Xiao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Wei Zhuang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Chaoyi Ye
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, People's Republic of China
| |
Collapse
|
4
|
Zhuang W, Lian G, Huang B, Du A, Gong J, Xiao G, Xu C, Wang H, Xie L. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem 2018; 455:169-183. [DOI: 10.1007/s11010-018-3480-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
|
5
|
Yao PL, Morales JL, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-β/δ modulates mast cell phenotype. Immunology 2017; 150:456-467. [PMID: 27935639 DOI: 10.1111/imm.12699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
The peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is known to have multiple anti-inflammatory effects, typically observed in endothelial cells, macrophages, T cells and B cells. Despite the fact that mast cells are important mediators of inflammation, to date, the role of PPARβ/δ in mast cells has not been examined. Hence, the present study examined the hypothesis that PPARβ/δ modulates mast cell phenotype. Bone-marrow-derived mast cells (BMMCs) and peritoneal mast cells from Pparβ/δ+/+ mice expressed higher levels of high-affinity IgE receptor (FcεRI) compared with Pparβ/δ-/- mice. BMMCs from Pparβ/δ+/+ mice also exhibited dense granules, associated with higher expression of enzymes and proteases compared with Pparβ/δ-/- mice. Resting BMMCs from Pparβ/δ+/+ mice secreted lower levels of inflammatory cytokines, associated with the altered activation of phospholipase Cγ1 and extracellular signal-regulated kinases compared with Pparβ/δ-/- mice. Moreover, the production of cytokines by mast cells induced by various stimuli was highly dependent on PPARβ/δ expression. This study demonstrates that PPARβ/δ is an important regulator of mast cell phenotype.
Collapse
Affiliation(s)
- Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Jose L Morales
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Li Q, Mao M, Qiu Y, Liu G, Sheng T, Yu X, Wang S, Zhu D. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension. PLoS One 2016; 11:e0149164. [PMID: 26871724 PMCID: PMC4752324 DOI: 10.1371/journal.pone.0149164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023] Open
Abstract
We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
- Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Min Mao
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
- Bio-pharmaceutical Key Laboratory of Harbin, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanli Qiu
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gaofeng Liu
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tingting Sheng
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Xiufeng Yu
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Shuang Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Daling Zhu
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
- Bio-pharmaceutical Key Laboratory of Harbin, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
7
|
Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation. Molecules 2014; 19:19036-49. [PMID: 25412048 PMCID: PMC6270752 DOI: 10.3390/molecules191119036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/28/2014] [Accepted: 10/09/2014] [Indexed: 02/02/2023] Open
Abstract
Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.
Collapse
|
8
|
Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 2014; 15:10334-49. [PMID: 24918290 PMCID: PMC4100154 DOI: 10.3390/ijms150610334] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 02/08/2023] Open
Abstract
Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA) can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs) treated with palmitic acid (PA) were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS). EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK) phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK) were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.
Collapse
|