1
|
Wu Z, Peng S, Huang W, Zhang Y, Liu Y, Yu X, Shen L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024; 14:877. [PMID: 39062591 PMCID: PMC11275170 DOI: 10.3390/biom14070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8) is a non-selective cation channel that can be activated by low temperatures (8-26 °C), cooling agents (including menthol analogs such as menthol, icilin, and WS-12), voltage, and extracellular osmotic pressure changes. TRPM8 expression has been identified in the digestive system by several research teams, demonstrating its significant involvement in tissue function and pathologies of the digestive system. Specifically, studies have implicated TRPM8 in various physiological and pathological processes of the esophagus, stomach, colorectal region, liver, and pancreas. This paper aims to comprehensively outline the distinct role of TRPM8 in different organs of the digestive system, offering insights for future mechanistic investigations of TRPM8. Additionally, it presents potential therapeutic targets for treating conditions such as digestive tract inflammation, tumors, sensory and functional disorders, and other related diseases. Furthermore, this paper addresses the limitations of existing studies and highlights the research prospects associated with TRPM8.
Collapse
Affiliation(s)
- Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Wensha Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Yuling Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Yashi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Ybañez-Julca RO, Pino-Ríos R, Quispe-Díaz IM, Asunción-Alvarez D, Acuña-Tarrillo EE, Mantilla-Rodríguez E, Minchan-Herrera P, Catalán MA, Zevallos-Escobar L, Vásquez-Corales E, Yáñez O, Gutiérrez-Alvarado WO, Benites J. Antispasmodic Effect of Valeriana pilosa Root Essential Oil and Potential Mechanisms of Action: Ex Vivo and In Silico Studies. Pharmaceutics 2023; 15:2072. [PMID: 37631286 PMCID: PMC10458982 DOI: 10.3390/pharmaceutics15082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Infusions of Valeriana pilosa are commonly used in Peruvian folk medicine for treating gastrointestinal disorders. This study aimed to investigate the spasmolytic and antispasmodic effects of Valeriana pilosa essential oil (VPEO) on rat ileum. The basal tone of ileal sections decreased in response to accumulative concentrations of VPEO. Moreover, ileal sections precontracted with acetylcholine (ACh), potassium chloride (KCl), or barium chloride (BaCl2) were relaxed in response to VPEO by a mechanism that depended on atropine, hyoscine butylbromide, solifenacin, and verapamil, but not glibenclamide. The results showed that VPEO produced a relaxant effect by inhibiting muscarinic receptors and blocking calcium channels, with no apparent effect on the opening of potassium channels. In addition, molecular docking was employed to evaluate VPEO constituents that could inhibit intestinal contractile activity. The study showed that α-cubebene, β-patchoulene, β-bourbonene, β-caryophyllene, α-guaiene, γ-muurolene, valencene, eremophyllene, and δ-cadinene displayed the highest docking scores on muscarinic acetylcholine receptors and voltage-gated calcium channels, which may antagonize M2 and/or M3 muscarinic acetylcholine receptors and block voltage-gated calcium channels. In summary, VPEO has both spasmolytic and antispasmodic effects. It may block muscarinic receptors and calcium channels, thus providing a scientific basis for its traditional use for gastrointestinal disorders.
Collapse
Affiliation(s)
- Roberto O. Ybañez-Julca
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Ricardo Pino-Ríos
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Iván M. Quispe-Díaz
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Daniel Asunción-Alvarez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Edwin E. Acuña-Tarrillo
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Elena Mantilla-Rodríguez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Patricia Minchan-Herrera
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (D.A.-A.); (E.E.A.-T.); (E.M.-R.); (P.M.-H.)
| | - Marcelo A. Catalán
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Liz Zevallos-Escobar
- Escuela de Farmacia y Bioquímica, Universidad Católica Los Ángeles de Chimbote, Chimbote 02801, Peru; (L.Z.-E.); (E.V.-C.)
| | - Edison Vásquez-Corales
- Escuela de Farmacia y Bioquímica, Universidad Católica Los Ángeles de Chimbote, Chimbote 02801, Peru; (L.Z.-E.); (E.V.-C.)
| | - Osvaldo Yáñez
- Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile;
| | | | - Julio Benites
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| |
Collapse
|
3
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M, on behalf of the OEMONOM. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
4
|
Shulman RJ, Chumpitazi BP, Abdel-Rahman SM, Garg U, Musaad S, Kearns GL. Randomised trial: Peppermint oil (menthol) pharmacokinetics in children and effects on gut motility in children with functional abdominal pain. Br J Clin Pharmacol 2022; 88:1321-1333. [PMID: 34528282 PMCID: PMC8863319 DOI: 10.1111/bcp.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022] Open
Abstract
AIMS Little is known regarding the pharmacokinetics and pharmacodynamics of menthol, the active ingredient in peppermint oil (PMO). Our aim was to investigate the pharmacokinetics of menthol at 3 dose levels in children and determine their effects on gut motility and transit. METHODS Thirty children ages 7-12 years with functional abdominal pain underwent wireless motility capsule (WMC) testing. Approximately 1 week later they were randomized to 180, 360 or 540 mg of enteric coated PMO (10 participants per dose). Menthol pharmacokinetics were determined via blood sampling over 24 hours. They then took their respective dose of PMO (180 mg once, 180 mg twice or 180 mg thrice daily) for 1 week during which time the WMC test was repeated. RESULTS Evaluable area under the plasma concentration vs. time curve (AUClast ) data were available in 29 of 30 participants. A direct linear relationship (apparent dose-proportionality for systemic menthol exposure) was observed between PMO dose and menthol systemic exposure with mean elimination half-life 2.1, 3.5 and 4.6 hours for the 180, 360 and 540 mg doses, respectively. WMC technical issues precluded complete motility data in all participants. Colonic transit time was inversely related to AUClast (P = .003); transit time in other regions was not affected. In contrast, stomach, small bowel and whole gut (but not colonic) contractility positively correlated with menthol AUClast (P < .05). CONCLUSION Pharmacokinetics and pharmacodynamics of menthol derived from PMO demonstrated apparent dose-proportionality. A higher dose of PMO may be needed to achieve maximal gut response. www.clinicaltrials.gov NCT03295747.
Collapse
Affiliation(s)
- Robert J. Shulman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA,Texas Children’s Hospital, Houston, TX, USA
| | - Bruno P. Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA,Texas Children’s Hospital, Houston, TX, USA
| | | | - Uttam Garg
- Departments of Pathology and Laboratory Medicine, Children’s Mercy Hospital; University of Missouri School of Medicine, Kansas City, MO, USA
| | - Salma Musaad
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Gregory L. Kearns
- Texas Christian University and University of North Texas Health Science Center School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
5
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
6
|
Wang G. Ligand-stereoselective allosteric activation of cold-sensing TRPM8 channels by an H-bonded homochiral menthol dimer with head-to-head or head-to-tail. Chirality 2021; 33:783-796. [PMID: 34596287 DOI: 10.1002/chir.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/07/2022]
Abstract
Both menthol and its analog WS-12 share the same hydrophobic intra-subunit binding pocket between a voltage-sensor-like domain and a TRP domain in a cold-sensing TRPM8 channel. However, unlike WS-12, menthol upregulates TRPM8 with a low efficacy but a high coefficient of a dose response at membrane hyperpolarization and with ligand stereoselectivity at membrane depolarization. The underlying mechanisms are unknown. Here, this in silico research suggested that the ligand-stereoselective sequential cooperativity between two menthol molecules in the WS-12 pocket is required for allosteric activation of TRPM8. Furthermore, two H-bonded homochiral menthol dimers with both head-to-head and head-to-tail can compete for the WS-12 site via non-covalent interactions. Although both dimers can form an H-bonding network with a voltage sensor S4 to disrupt a S3-S4 salt bridge in the voltage-sensor-like domain to release a "parking brake," only one dimer may drive channel opening by pushing a "gas pedal" in the TRP domain away from the S6 gate against S4. In this way, the efficacy is decreased, but the cooperativity is increased for the menthol effect at membrane hyperpolarization. Therefore, this review may extend a new pathway for ligand-stereoselective allosteric regulation of other voltage- and ligand-gated ion channels by menthol.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
7
|
Umezu T. Identification of novel target molecules of l-menthol. Heliyon 2021; 7:e07329. [PMID: 34195432 PMCID: PMC8237303 DOI: 10.1016/j.heliyon.2021.e07329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The present study used a binding assay to identify novel target biomolecules of l-menthol ([−]-menthol) that promote mouse ambulation. Among 88 different ligands to specific biomolecules examined, 0.1 mM l-menthol inhibited the binding of 13 ligands with relatively high inhibition rates. The assays showed that l-menthol acts on calcium channels, sodium channels, γ-aminobutyric acid type A (GABAA) receptor, GABA transporter, dopamine transporter, dopamine D4 receptor, adenosine A2a receptor, α2A-adrenergic receptor, histamine H2 receptor, bombesin receptor, angiotensin AT1 receptor, vasopressin V2 receptor, and leukotriene B4 receptor over a similar concentration range. The inhibition constant (Ki) for l-menthol inhibition of binding of [3H]-WIN35,428 to the human recombinant dopamine transporter was 6.15 × 10−4 mol/L. The Ki for l-menthol inhibition of binding of [3H]-ethynylbicycloorthobenzoate (EBOB), a ligand of GABAA receptor picrotoxin site, was 2.88 × 10−4 mol/L. These results should aid future research by providing clues for investigating the mechanisms underlying l-menthol activities, including the ambulation-promoting effect. The present results suggest that the dopamine transporter, adenosine A2a receptor, dopamine D4 receptor, α2A-adrenergic receptor, and GABAA receptor are promising candidate molecules that are involved in the mechanisms underlying the psychostimulant-like effect of l-menthol.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
8
|
Wang R, Zhou K, Xiong R, Yang Y, Yi R, Hu J, Liao W, Zhao X. Pretreatment with Lactobacillus fermentum XY18 Relieves Gastric Injury Induced by HCl/Ethanol in Mice via Antioxidant and Anti-Inflammatory Mechanisms. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 14:5721-5734. [PMID: 33408461 PMCID: PMC7779313 DOI: 10.2147/dddt.s280429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
Aim Lactobacillus fermentum XY18 (LF-XY18) is a bacterial strain with satisfactory antioxidant properties in vitro that we previously isolated from Xinjiang yogurt. This article will explore the preventive effect of LF-XY18 on acute gastric injury and provide the basis for the innovative development and application of lactic acid bacteria (LAB). Methods Kunming mice underwent gastric injury induced by hydrochloric acid and ethanol. LF-XY18 isolated from yogurt in Xinyuan County in the Yili region of Xinjiang was subsequently administered intragastrically to mice for 2 weeks to explore the mechanism of LF-XY18 in preventing gastric injury via its antioxidant effects. Results There was decreased gastric juice volume, gastric injury area, and formation of gastric mucosal lesions in the LF-XY18 mice as compared to those in the control mice, while LF-XY18 prevented the decrease in the gastric juice pH value in mice. Compared with the gastric injury model group mice, LF-XY18 reduced the serum levels of motilin, substance P, interleukin-6, interleukin-12, tumor necrosis factor-α, and interferon-γ but increased the serum levels of somatostatin and vasoactive intestinal peptide. The activities of superoxide dismutase, glutathione peroxidase, glutathione, and nitric oxide were increased in the gastric tissue of the LF-XY18 mice compared with the control mice, but malondialdehyde activity was decreased in the LF-XY18 mice. Quantitative polymerase chain reaction analysis illustrated that in the gastric tissue of LF-XY18 mice, the messenger RNA (mRNA) expression of occludin, epidermal growth factor (EGF), EGF receptor, vascular EGF, inhibitor kappa-B-α, neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc superoxide dismutase, manganese superoxide dismutase, and catalase was stronger than that in the control mice, but the mRNA expression of activated B cells (NF-κB), inducible nitric oxide synthase, and cyclooxygenase-2 was weaker than in the control mice. Conclusion These results indicate that LF-XY18 has a potential role in the prevention of gastric injury through antioxidant effects, and a high concentration (1.0 × 109 CFU/kg b.w.) of LF-XY18 has a stronger anti-gastric injury effect than a low concentration (1.0 × 108 CFU/kg b.w.).
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - Kexiang Zhou
- Gastroenterology, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rongrong Xiong
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - Yi Yang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Jing Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - Wei Liao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Wang R, Sun F, Ren C, Zhai L, Xiong R, Yang Y, Yang W, Yi R, Li C, Zhao X. Hunan insect tea polyphenols provide protection against gastric injury induced by HCl/ethanol through an antioxidant mechanism in mice. Food Funct 2020; 12:747-760. [PMID: 33367402 DOI: 10.1039/d0fo02677h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purposes of this study were to explore the preventive and treatment effects of Hunan insect tea polyphenols (HITPs) on gastric injury in mice induced by HCl/ethanol and to investigate their molecular mechanisms of action. Both HITPs and ranitidine inhibited the formation and further deterioration of gastric mucosal lesions, reduced the secretion of gastric juice, and raised gastric juice pH compared to the control. The HITPs-H treated group had lower serum levels of motilin, substance P, and endothelin than the control group, but they had higher serum levels of vasoactive intestinal peptide and somatostatin. Mice treated with HITPs had lower serum levels of cytokines interleukin (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ than the control group. The activities of superoxide dismutase (SOD), nitric oxide, and glutathione peroxidase (GSH-Px) were higher in the gastric tissues of HITP-treated mice, but the malondialdehyde content was lower. Quantitative PCR analysis indicated that the mRNA expression of occludin, epidermal growth factor (EGF), EGF receptor (EGFR), vascular EGF (VEGF), inhibitor kappaB-α, cuprozinc-superoxide dismutase, manganese-superoxide dismutase, GSH-Px, neuronal nitric oxide synthase, and endothelial NOS increased significantly in the gastric tissues of HITP-treated mice. However, the activated B cell, inducible NOS, cyclooxygenase-2, TNF-α, IL-1 beta, and IL-6 mRNA expression levels in the HITPs group were lower than those in the control group. The protective effect of a high concentration (200 mg per kg bw) of HITPs on gastric injury induced by HCl/ethanol was stronger than that of a low concentration (100 mg per kg bw) of HITPs. High-performance liquid chromatography (HPLC) revealed that the HITPs contained cryptochlorogenic acid, (-)-epicatechin gallate, and isochlorogenic acid C. Taken together, our findings indicate that the HITPs played a role in the prevention of gastric damage. The antioxidant effect of the HITPs contributed to their potential value in the prevention and treatment of gastric injury. HITPs have broad prospects as biologically active substances for food development.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang R, Zeng X, Liu B, Yi R, Zhou X, Mu J, Zhao X. Prophylactic effect of Lactobacillus plantarum KSFY06 on HCl/ethanol-induced gastric injury in mice. Food Funct 2020; 11:2679-2692. [PMID: 32162630 DOI: 10.1039/c9fo02474c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The present study was conducted to determine the prophylactic effect of Lactobacillus plantarum KSFY06 (LP-KSFY06) on HCl/ethanol-induced gastric injury in Kunming mice. The experimental mice were allocated into six groups: the normal group, HCl/ethanol treated group, HCl/ethanol + ranitidine treated group, HCl/ethanol + Lactobacillus delbrueckii subsp. Bulgaricus (LB) treated group, HCl/ethanol + low concentration of Lactobacillus plantans KSFY06 (LP-KSFY06-L) treated group, and HCl/ethanol + high concentration of Lactobacillus plantans KSFY06 (LP-KSFY06-H) treated group. The changes in daily body weight and food intake of the mice in the HCl/ethanol + LP-KSFY06-H treated group were the closest to those of the HCl/ethanol + ranitidine treated and normal groups. LP-KSFY06 significantly inhibited the formation of gastric mucosal lesions, reduced the area of gastric lesions, inhibited gastric-juice secretion, and increased pH compared with the HCl/ethanol treated group. After the treatment, the serum interleukin-6 (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ levels and the gastric-tissue IL-6 and IL-12 levels in the LP-KSFY06 (including LP-KSFY06-L and LP-KSFY06-H) group decreased compared with those in the HCl/ethanol treated group. The level of serum and gastric tissue malondialdehyde was lower and the nitric oxide, total superoxide dismutase, and glutathione activities in the LP-KSFY06 treated mice were higher than those in the HCl/ethanol treated mice. Quantitative polymerase chain reaction analysis and western blot analysis showed that LP-KSFY06 increased the mRNA and protein expression of the epidermal growth factor, epidermal growth factor receptor, vascular endothelial growth factor, inhibitor kappaB-α, neuronal nitric oxide synthase, and endothelial NOS and reduced the mRNA and protein expression of nuclear factor kappaB, inducible NOS, cyclooxygenase-2, TNF-α, and IL-1β in gastric tissues compared with the HCl/ethanol treated mice. These experimental results showed that a high concentration (1.0 × 109 CFU per kg B.W.) of LP-KSFY06 had a stronger effect on preventing gastric injury than a low concentration (1.0 × 108 CFU per kg B.W.) of LP-KSFY06. These results suggest that LP-KSFY06 has a potential probiotic effect in preventing gastric injury.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, P.R. China
| | - Bihui Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China and College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|
11
|
Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules 2019; 24:molecules24091675. [PMID: 31035694 PMCID: PMC6539827 DOI: 10.3390/molecules24091675] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
The antispasmodic effect of drugs is used for the symptomatic treatment of cramping and discomfort affecting smooth muscles from the gastrointestinal, billiary or genitourinary tract in a variety of clinical situations.The existing synthetic antispasmodic drugs may cause a series of unpleasant side effects, and therefore the discovery of new molecules of natural origin is an important goal for the pharmaceutical industry. This review describes a series of recent studies investigating the antispasmodic effect of essential oils from 39 plant species belonging to 12 families. The pharmacological models used in the studies together with the mechanistic discussions and the chemical composition of the essential oils are also detailed. The data clearly demonstrate the antispasmodic effect of the essential oils from the aromatic plant species studied. Further research is needed in order to ascertain the therapeutic importance of these findings.
Collapse
|
12
|
Al Kury LT, Mahgoub M, Howarth FC, Oz M. Natural Negative Allosteric Modulators of 5-HT₃ Receptors. Molecules 2018; 23:E3186. [PMID: 30513973 PMCID: PMC6321066 DOI: 10.3390/molecules23123186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy-induced nausea and vomiting (CINV) remain the most common and devastating side-effects associated with cancer chemotherapy. In recent decades, several lines of research emphasize the importance of 5-hydroxytryptamine3 (5-HT3; serotonin) receptors in the pathogenesis and treatment of CINV. 5-HT₃ receptors are members of ligand-gated ion channels that mediate the rapid and transient membrane-depolarizing effect of 5-HT in the central and peripheral nervous system. These receptors play important roles in nausea and vomiting, as well as regulation of peristalsis and pain transmission. The development of antagonists for 5-HT₃ receptor dramatically improved the treatment of CINV in cancer patients. In fact, the most common use of 5-HT₃ receptor antagonists to date is the treatment of nausea and vomiting. In recent years, there has been an increasing tendency to use natural plant products as important therapeutic entities in the treatment of various diseases. In this article, we examined the results of earlier studies on the actions of natural compounds on the functional properties of 5-HT₃ receptors. It is likely that these natural modulators of 5-HT₃ receptors can be employed as lead structures for the synthesis of therapeutic agents for treating CINV in future clinical studies.
Collapse
Affiliation(s)
- Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi, United Arab Emirates.
| | - Mohamed Mahgoub
- Departments of Pharmacology, College of Medicine and Health Sciences, UAE University, 15551 Al Ain, United Arab Emirates.
| | - Frank Christopher Howarth
- Departments of Physiology, College of Medicine and Health Sciences, UAE University, 15551 Al Ain, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, 13060 Kuwait.
| |
Collapse
|
13
|
Oz M, El Nebrisi EG, Yang KHS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017; 8:472. [PMID: 28769802 PMCID: PMC5513973 DOI: 10.3389/fphar.2017.00472] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023] Open
Abstract
Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Department of Basic Medical Sciences, College of Medicine, Qatar UniversityDoha, Qatar
| | - Eslam G El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Keun-Hang S Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman UniversityOrange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed UniversityAbu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Amato A, Baldassano S, Caldara GF, Mulè F. Pancreatic polypeptide stimulates mouse gastric motor activity through peripheral neural mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 27381051 DOI: 10.1111/nmo.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic polypeptide (PP) is supposed to be one of the major endogenous agonists of the neuropeptide Y4 receptor. Pancreatic polypeptide can influence gastrointestinal motility, acting mainly through vagal mechanisms, but whether PP acts directly on the stomach has not been explored yet. The aims of this study were to investigate the effects of PP on mouse gastric emptying, on spontaneous tone of whole stomach in vitro and to examine the mechanism of action. METHODS Gastric emptying was measured by red phenol method after i.p. PP administration (1-3 nmol per mouse). Responses induced by PP (1-300 mmol L-1 ) on gastric endoluminal pressure were analyzed in vitro in the presence of different drugs. Gastric genic expression of Y4 receptor was verified by RT-PCR. KEY RESULTS Pancreatic polypeptide dose-dependently increased non-nutrient liquid gastric emptying rate. In vitro, PP produced a concentration-dependent contraction that was abolished by tetrodotoxin, a neural blocker of Na+ voltage-dependent channels. The contractile response was significantly reduced by atropine, a muscarinic receptor antagonist, and by SR48968, an NK2 receptor antagonist, while it was potentiated by neostigmine, an inhibitor of acetylcholinesterase. The joint application of atropine and SR48968 fully abolished PP contractile effect. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of Y4 receptor mRNA in mouse stomach with a greater expression in antrum than in fundus. CONCLUSIONS & INFERENCES The present findings demonstrate that exogenous PP stimulates mouse gastric motor activity, by acting directly on the stomach. This effect appears due to the activation of enteric excitatory neurons releasing acetylcholine and tachykinins.
Collapse
Affiliation(s)
- A Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - S Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - G F Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
15
|
TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation. PLoS One 2015; 10:e0143171. [PMID: 26599698 PMCID: PMC4657920 DOI: 10.1371/journal.pone.0143171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.
Collapse
|
16
|
Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 2015; 152:83-97. [PMID: 25956464 DOI: 10.1016/j.pharmthera.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels.
Collapse
|
17
|
Wang TM, Ding LQ, Jin HJ, Shi R, Wu JS, Zhu L, Jia YQ, Ma YM. Simultaneous quantification of multiple volatile active components in rat plasma using a headspace-solid phase dynamic extraction method coupled to gas chromatography-tandem mass spectroscopy: application in a pharmacokinetic study of Longhu Rendan pills. RSC Adv 2015. [DOI: 10.1039/c5ra00776c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A HS-SPDE-GC-MS/MS method for investigating pharmacokinetics of l-menthol, borneol, isoborneol, and camphor in rat plasma after oral administration of LRPs.
Collapse
Affiliation(s)
- Tian-Ming Wang
- Department of Pharmacology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Li-Qing Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd
- Shanghai 200052
- China
| | - Hua-Jia Jin
- Shanghai Zhonghua Pharmaceutical Co., Ltd
- Shanghai 200052
- China
| | - Rong Shi
- Department of Pharmacology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Jia-Sheng Wu
- Department of Pharmacology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Li Zhu
- Shanghai Zhonghua Pharmaceutical Co., Ltd
- Shanghai 200052
- China
| | - Yi-Qun Jia
- Experiment Center for Science and Technology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yue-Ming Ma
- Department of Pharmacology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|