1
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Li XX, Lee JD, Lee HS, Clark RJ, Woodruff TM. TLQP-21 is a low potency partial C3aR activator on human primary macrophages. Front Immunol 2023; 14:1086673. [PMID: 36776827 PMCID: PMC9909341 DOI: 10.3389/fimmu.2023.1086673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 μM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Han S Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
3
|
Anaphylatoxin receptor promiscuity for commonly used complement C5a peptide agonists. Int Immunopharmacol 2021; 100:108074. [PMID: 34454293 DOI: 10.1016/j.intimp.2021.108074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
The complement system is an essential component of innate immunity. Its activation generates the effector cleavage proteins, anaphylatoxins C3a and C5a, that exert activity by interacting with three structurally related seven-transmembrane receptors. C3a activates C3aR, whilst C5a interacts with both C5aR1 and C5aR2 with equal potency. Of the three receptors, C5aR1 in particular is considered the most functionally potent inflammatory driver and has been the major target for pharmacological development. Multiple peptidic C5a agonists have been developed to target C5aR1, with the full agonists EP54 (YSFKPMPLaR) and EP67 (YSFKDMP(MeL)aR), and the partial agonist C028 (C5apep, NMe-FKPdChaChadR) being the most commonly utilised in research. Recent studies have indicated that small complement peptide ligands may lack selectivity amongst the three anaphylatoxin receptors, however this has not been uniformly confirmed for these commonly used C5a agonists. In the present study, we therefore characterised the pharmacological activity of EP54, EP67, and C5apep at human C5aR1, C5aR2 and C3aR, by conducting signalling assays in transfected cell lines, and in human primary macrophages. Our results revealed that none of the compounds tested were selective for human C5aR1. Both EP54 and EP67 were potent, full C3aR agonists, and EP54 and C5apep potently and partially activated human C5aR2. Therefore, we caution against the usage of these ligands, particularly EP54 and EP67, as C5a surrogates in C5a/ C5aR research.
Collapse
|
4
|
Li XX, Kumar V, Clark RJ, Lee JD, Woodruff TM. The "C3aR Antagonist" SB290157 is a Partial C5aR2 Agonist. Front Pharmacol 2021; 11:591398. [PMID: 33551801 PMCID: PMC7859635 DOI: 10.3389/fphar.2020.591398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Innate immune complement activation generates the C3 and C5 protein cleavage products C3a and C5a, defined classically as anaphylatoxins. C3a activates C3aR, while C5a activates two receptors (C5aR1 and C5aR2) to exert their immunomodulatory activities. The non-peptide compound, SB290157, was originally reported in 2001 as the first C3aR antagonist. In 2005, the first report on the non-selective nature of SB290157 was published, where the compound exerted clear agonistic, not antagonistic, activity in variety of cells. Other studies also documented the non-selective activities of this drug in vivo. These findings severely hamper data interpretation regarding C3aR when using this compound. Unfortunately, given the dearth of C3aR inhibitors, SB290157 still remains widely used to explore C3aR biology (>70 publications to date). Given these issues, in the present study we aimed to further explore SB290157's pharmacological selectivity by screening the drug against three human anaphylatoxin receptors, C3aR, C5aR1 and C5aR2, using cell models. We identified that SB290157 exerts partial agonist activity at C5aR2 by mediating β-arrestin recruitment at higher compound doses. This translated to a functional outcome in both human and mouse primary macrophages, where SB290157 significantly dampened C5a-induced ERK signaling. We also confirmed that SB290157 acts as a potent agonist at human C3aR in transfected cells, but as an antagonist in primary human macrophages. Our results therefore provide even more caution against using SB290157 as a research tool to explore C3aR function. Given the reported immunomodulatory and anti-inflammatory activities of C5aR2 agonism, any function observed with SB290157 could be due to these off-target activities.
Collapse
Affiliation(s)
| | | | | | | | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Li XX, Lee JD, Kemper C, Woodruff TM. The Complement Receptor C5aR2: A Powerful Modulator of Innate and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 202:3339-3348. [PMID: 31160390 DOI: 10.4049/jimmunol.1900371] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/01/2023]
Abstract
Complement activation generates the core effector protein C5a, a potent immune molecule that is linked to multiple inflammatory diseases. Two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), mediate the biological activities of C5a. Although C5aR1 has broadly acknowledged proinflammatory roles, C5aR2 remains at the center of controversy, with existing findings supporting both immune-activating and immune-dampening functions. Recent progress has been made toward resolving these issues. Instead of being a pure recycler and sequester of C5a, C5aR2 is capable of mediating its own set of signaling events and through these events exerting significant immunomodulatory effects not only toward C5aR1 but also other pattern recognition receptors and innate immune systems, such as NLRP3 inflammasomes. This review highlights the existing knowns and unknowns concerning C5aR2 and provides a timely update on recent breakthroughs which are expected to have a substantial impact on future fundamental and translational C5aR2 research.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; and
| |
Collapse
|
7
|
Diller DJ, Swanson J, Bayden AS, Brown CJ, Thean D, Lane DP, Partridge AW, Sawyer TK, Audie J. Rigorous Computational and Experimental Investigations on MDM2/MDMX-Targeted Linear and Macrocyclic Peptides. Molecules 2019; 24:E4586. [PMID: 31847417 PMCID: PMC6943714 DOI: 10.3390/molecules24244586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
There is interest in peptide drug design, especially for targeting intracellular protein-protein interactions. Therefore, the experimental validation of a computational platform for enabling peptide drug design is of interest. Here, we describe our peptide drug design platform (CMDInventus) and demonstrate its use in modeling and predicting the structural and binding aspects of diverse peptides that interact with oncology targets MDM2/MDMX in comparison to both retrospective (pre-prediction) and prospective (post-prediction) data. In the retrospective study, CMDInventus modules (CMDpeptide, CMDboltzmann, CMDescore and CMDyscore) were used to accurately reproduce structural and binding data across multiple MDM2/MDMX data sets. In the prospective study, CMDescore, CMDyscore and CMDboltzmann were used to accurately predict binding affinities for an Ala-scan of the stapled α-helical peptide ATSP-7041. Remarkably, CMDboltzmann was used to accurately predict the results of a novel D-amino acid scan of ATSP-7041. Our investigations rigorously validate CMDInventus and support its utility for enabling peptide drug design.
Collapse
Affiliation(s)
- David J. Diller
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- Venenum BioDesign, LLC, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Jon Swanson
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- ChemModeling, LLC, Suite 101, 500 Huber Park Ct, Weldon Spring, MO 63304, USA
| | - Alexander S. Bayden
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- Kleo Pharmaceuticals, 25 Science Park, Ste 235, New Haven, CT 06511, USA
| | - Chris J. Brown
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - Dawn Thean
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - David P. Lane
- A*STAR, p53 Laboratory, Singapore 138648, Singapore; (C.J.B.); (D.T.); (D.P.L.)
| | - Anthony W. Partridge
- MSD International GmbH, Singapore 138665, Singapore;
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tomi K. Sawyer
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Joseph Audie
- CMDBioscience, 5 Park Avenue, New Haven, CT 06511, USA; (D.J.D.); (J.S.); (A.S.B.)
- College of Arts and Sciences, Department of Chemistry, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| |
Collapse
|
8
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
9
|
Hawksworth OA, Li XX, Coulthard LG, Wolvetang EJ, Woodruff TM. New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol Immunol 2017; 89:36-43. [PMID: 28576324 DOI: 10.1016/j.molimm.2017.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
The complement system is a pivotal driver of innate immunity, coordinating the host response to protect against pathogens. At the heart of the complement response lie the active fragments, C3a and C5a, acting through their specific receptors, C3aR, C5aR1, and C5aR2, to direct the cellular response to inflammation. Their potent function however, places them at risk of damaging the host, with aberrant C3a and C5a signaling activity linked to a wide range of disorders of inflammatory, autoimmune, and neurodegenerative etiologies. As such, the therapeutic control of these receptors represents an attractive drug target, though, the realization of this clinical potential remains limited. With the success of eculizumab, and the progression of a number of novel C5a-C5aR1 targeted drugs to phase II and III clinical trials, there is great promise for complement therapeutics in future clinical practice. In contrast, the toolbox of drugs available to modulate C3aR and C5aR2 signaling remains limited, however, the emergence of new selective ligands and molecular tools, and an increased understanding of the function of these receptors in disease, has highlighted their unique potential for clinical applications. This review provides an update on the growing arsenal of drugs now available to target C5, and C5a and C3a receptor signaling, and discusses their utility in both clinical and pre-clinical development.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Xaria X Li
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia; School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
10
|
Kemper C. Targeting the Dark Horse of complement: the first generation of functionally selective C5aR2 ligands. Immunol Cell Biol 2016; 94:717-8. [DOI: 10.1038/icb.2016.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London London UK
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH) Bethesda MD USA
| |
Collapse
|
11
|
Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunol Cell Biol 2016; 94:787-95. [PMID: 27108698 DOI: 10.1038/icb.2016.43] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
The complement cascade is comprised of a highly sophisticated network of innate immune proteins that are activated in response to invading pathogens or tissue injury. The complement activation peptide, C5a, binds two seven transmembrane receptors, namely the C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2, or C5L2). C5aR2 is a non-G-protein-signalling receptor whose biological role remains controversial. Some of this controversy arises owing to the lack of selective ligands for C5aR2. In this study, a library of 61 peptides based on the C-terminus of C5a was assayed for the ability to selectively modulate C5aR2 function. Two ligands (P32 and P59) were identified as functionally selective C5aR2 ligands, exhibiting selective recruitment of β-arrestin 2 via C5aR2, partial inhibition of C5a-induced ERK1/2 activation and lipopolysaccharide-stimulated interleukin-6 release from human monocyte-derived macrophages. Importantly, neither ligand could induce ERK1/2 activation or inhibit C5a-induced ERK1/2 activation via C5aR1 directly. Finally, P32 inhibited C5a-mediated neutrophil mobilisation in wild-type, but not C5aR2(-/-) mice. These functionally selective ligands for C5aR2 are novel tools that can selectively modulate C5a activity in vitro and in vivo, and thus will be valuable tools to interrogate C5aR2 function.
Collapse
|
12
|
Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem 2015; 7:2173-93. [PMID: 26510691 DOI: 10.4155/fmc.15.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.
Collapse
|
13
|
Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. THE JOURNAL OF IMMUNOLOGY 2015; 194:3542-8. [PMID: 25848071 DOI: 10.4049/jimmunol.1403068] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement activation product C3a is often described as a proinflammatory mediator, alongside its downstream cousin, C5a. However, emerging studies show that C3a has several anti-inflammatory facets in vivo. For example, in the acute inflammatory response, C3a acts in direct opposition to C5a, through preventing the accumulation of neutrophils in inflamed tissues by independently regulating their mobilization. This acute, protective, and opposing activity of C3a to C5a is also illustrated in models of septicemia. In this article, we reinvestigate the discovery and original classification of C3a as a proinflammatory mediator and highlight the emerging studies demonstrating anti-inflammatory effects for C3a in the immune response. It is our hope that this review illuminates these apparently contradictory roles for C3a and challenges the general dogma surrounding C3a, which, historically, has ubiquitously been described as a proinflammatory mediator. In light of this, we urge investigators to use "inflammatory modulator" as the descriptor for C3a.
Collapse
Affiliation(s)
- Liam G Coulthard
- School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|