1
|
Saoudi A, Fergus C, Gileadi T, Montanaro F, Morgan JE, Kelly VP, Tensorer T, Garcia L, Vaillend C, Muntoni F, Goyenvalle A. Investigating the Impact of Delivery Routes for Exon Skipping Therapies in the CNS of DMD Mouse Models. Cells 2023; 12:cells12060908. [PMID: 36980249 PMCID: PMC10047648 DOI: 10.3390/cells12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Nucleic acid-based therapies have demonstrated great potential for the treatment of monogenetic diseases, including neurologic disorders. To date, regulatory approval has been received for a dozen antisense oligonucleotides (ASOs); however, these chemistries cannot readily cross the blood–brain barrier when administered systemically. Therefore, an investigation of their potential effects within the central nervous system (CNS) requires local delivery. Here, we studied the brain distribution and exon-skipping efficacy of two ASO chemistries, PMO and tcDNA, when delivered to the cerebrospinal fluid (CSF) of mice carrying a deletion in exon 52 of the dystrophin gene, a model of Duchenne muscular dystrophy (DMD). Following intracerebroventricular (ICV) delivery (unilateral, bilateral, bolus vs. slow rate, repeated via cannula or very slow via osmotic pumps), ASO levels were quantified across brain regions and exon 51 skipping was evaluated, revealing that tcDNA treatment invariably generates comparable or more skipping relative to that with PMO, even when the PMO was administered at higher doses. We also performed intra-cisterna magna (ICM) delivery as an alternative route for CSF delivery and found a biased distribution of the ASOs towards posterior brain regions, including the cerebellum, hindbrain, and the cervical part of the spinal cord. Finally, we combined both ICV and ICM injection methods to assess the potential of an additive effect of this methodology in inducing efficient exon skipping across different brain regions. Our results provide useful insights into the local delivery and associated efficacy of ASOs in the CNS in mouse models of DMD. These findings pave the way for further ASO-based therapy application to the CNS for neurological disease.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Talia Gileadi
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Thomas Tensorer
- SQY Therapeutics-Synthena, UVSQ, 78180 Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
- Correspondence: (F.M.); (A.G.)
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Correspondence: (F.M.); (A.G.)
| |
Collapse
|
2
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Hassan almalki W, Kazmi I, Al-Abbasi FA, Alzarea SI, Babu MR, Singh SK, Chellappan DK, Dua K, Gupta G. Oligonucleotides: A novel area of interest for drug delivery in neurodegenerative diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022; 14:pharmaceutics14071453. [PMID: 35890348 PMCID: PMC9315662 DOI: 10.3390/pharmaceutics14071453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer incidence and mortality continue to increase, while the conventional chemotherapeutic drugs confer limited efficacy and relevant toxic side effects. Novel strategies are urgently needed for more effective and safe therapeutics in oncology. However, a large number of proteins are considered undruggable by conventional drugs, such as the small molecules. Moreover, the mRNA itself retains oncological functions, and its targeting offers the double advantage of blocking the tumorigenic activities of the mRNA and the translation into protein. Finally, a large family of non-coding RNAs (ncRNAs) has recently emerged that are also dysregulated in cancer, but they could not be targeted by drugs directed against the proteins. In this context, this review describes how the oligonucleotide therapeutics targeting RNA or DNA sequences, are emerging as a new class of drugs, able to tackle the limitations described above. Numerous clinical trials are evaluating oligonucleotides for tumor treatment, and in the next few years some of them are expected to reach the market. We describe the oligonucleotide therapeutics targeting undruggable proteins (focusing on the most relevant, such as those originating from the MYC and RAS gene families), and for ncRNAs, in particular on those that are under clinical trial evaluation in oncology. We highlight the challenges and solutions for the clinical success of oligonucleotide therapeutics, with particular emphasis on the peculiar challenges that render it arduous to treat tumors, such as heterogeneity and the high mutation rate. In the review are presented these and other advantages offered by the oligonucleotide as an emerging class of biotherapeutics for a new era of precision anti-cancer medicine.
Collapse
Affiliation(s)
| | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence:
| |
Collapse
|
4
|
Kennedy Z, Gilbert JW, Godinho BMDC. Intrathecal Delivery of Therapeutic Oligonucleotides for Potent Modulation of Gene Expression in the Central Nervous System. Methods Mol Biol 2022; 2434:345-353. [PMID: 35213030 PMCID: PMC9703256 DOI: 10.1007/978-1-0716-2010-6_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Therapeutic oligonucleotides hold tremendous potential for treating central nervous system (CNS) disorders. The route of administration of oligonucleotides significantly impacts both distribution and silencing efficiency. Here, we describe a technically simple, clinically relevant method to administer oligonucleotide compounds into the CNS via direct intrathecal injections. This method achieves distribution throughout the CNS rapidly and permits high-throughput testing of oligonucleotide efficacy and potency in mammals.
Collapse
Affiliation(s)
- Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - James W Gilbert
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Ferguson CM, Godinho BM, Alterman JF, Coles AH, Hassler M, Echeverria D, Gilbert JW, Knox EG, Caiazzi J, Haraszti RA, King RM, Taghian T, Puri A, Moser RP, Gounis MJ, Aronin N, Gray-Edwards H, Khvorova A. Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep. JCI Insight 2021; 6:152203. [PMID: 34935646 PMCID: PMC8783676 DOI: 10.1172/jci.insight.152203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration — intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) — and 2 dosing regimens — single and repetitive via an implanted reservoir device — on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert M King
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Toloo Taghian
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Neil Aronin
- RNA Therapeutics Institute and.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Heather Gray-Edwards
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute and.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
7
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 PMCID: PMC11469828 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
8
|
Godinho BMDC, Henninger N, Bouley J, Alterman JF, Haraszti RA, Gilbert JW, Sapp E, Coles AH, Biscans A, Nikan M, Echeverria D, DiFiglia M, Aronin N, Khvorova A. Transvascular Delivery of Hydrophobically Modified siRNAs: Gene Silencing in the Rat Brain upon Disruption of the Blood-Brain Barrier. Mol Ther 2018; 26:2580-2591. [PMID: 30143435 PMCID: PMC6225091 DOI: 10.1016/j.ymthe.2018.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Effective transvascular delivery of therapeutic oligonucleotides to the brain presents a major hurdle to the development of gene silencing technologies for treatment of genetically defined neurological disorders. Distribution to the brain after systemic administrations is hampered by the low permeability of the blood-brain barrier (BBB) and the rapid clearance kinetics of these drugs from the blood. Here we show that transient osmotic disruption of the BBB enables transvascular delivery of hydrophobically modified small interfering RNA (hsiRNA) to the rat brain. Intracarotid administration of 25% mannitol and hsiRNA conjugated to phosphocholine-docosahexanoic acid (PC-DHA) resulted in broad ipsilateral distribution of PC-DHA-hsiRNAs in the brain. PC-DHA conjugation enables hsiRNA retention in the parenchyma proximal to the brain vasculature and enabled active internalization by neurons and astrocytes. Moreover, transvascular delivery of PC-DHA-hsiRNAs effected Htt mRNA silencing in the striatum (55%), hippocampus (51%), somatosensory cortex (52%), motor cortex (37%), and thalamus (33%) 1 week after administration. Aside from mild gliosis induced by osmotic disruption of the BBB, transvascular delivery of PC-DHA-hsiRNAs was not associated with neurotoxicity. Together, these findings provide proof-of-concept that temporary disruption of the BBB is an effective strategy for the delivery of therapeutic oligonucleotides to the brain.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James W Gilbert
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Marian DiFiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
10
|
Cheng CC, Yang YL, Liao KH, Lai TW. Adenosine receptor agonist NECA increases cerebral extravasation of fluorescein and low molecular weight dextran independent of blood-brain barrier modulation. Sci Rep 2016; 6:23882. [PMID: 27025761 PMCID: PMC4812297 DOI: 10.1038/srep23882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5′-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB.
Collapse
Affiliation(s)
- Chih-Chung Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ya Lan Yang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kate Hsiurong Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|