1
|
Lopes FM, Grenier C, Jarvis BW, Al Mahdy S, Lène-McKay A, Gurney AM, Newman WG, Waddington SN, Woolf AS, Roberts NA. Human HPSE2 gene transfer ameliorates bladder pathophysiology in a mutant mouse model of urofacial syndrome. eLife 2024; 13:RP91828. [PMID: 38990208 PMCID: PMC11239176 DOI: 10.7554/elife.91828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Rare early-onset lower urinary tract disorders include defects of functional maturation of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relaxation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal week, transgene transduction and expression were sought, and ex vivo myography was undertaken to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Therapeutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also significantly improved. These results constitute first steps towards curing UFS, a clinically devastating genetic disease featuring a bladder autonomic neuropathy.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Celine Grenier
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Benjamin W Jarvis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sara Al Mahdy
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adrian Lène-McKay
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison M Gurney
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Evolution Infection and Genomics, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Simon N Waddington
- Maternal & Fetal Medicine, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Grenier C, Lopes FM, Cueto-González AM, Rovira-Moreno E, Gander R, Jarvis BW, McCloskey KD, Gurney AM, Beaman GM, Newman WG, Woolf AS, Roberts NA. Neurogenic Defects Occur in LRIG2-Associated Urinary Bladder Disease. Kidney Int Rep 2023; 8:1417-1429. [PMID: 37441484 PMCID: PMC10334403 DOI: 10.1016/j.ekir.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.
Collapse
Affiliation(s)
- Celine Grenier
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Filipa M. Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Anna M. Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Catalonia, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Catalonia, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Romy Gander
- Department of Pediatric Surgery, Pediatric Urology and Renal Transplant Unit, University Hospital Vall D'Hebron Barcelona, Hospital Vall D'Hebron, Barcelona, Spain
| | - Benjamin W. Jarvis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Karen D. McCloskey
- Patrick G. Johnston Center for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Alison M. Gurney
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Glenda M. Beaman
- Manchester Center for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - William G. Newman
- Manchester Center for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
| | - Neil A. Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Cho HJ, Jiao HY, Kim SO. Decreased Expression of Urethral Caveolin-1, -2, and -3 in the Rat Model of Overactive Bladder: Potential Mediator of Functional Interaction of Urethra and Urinary Bladder. Int Neurourol J 2023; 27:47-54. [PMID: 37015724 PMCID: PMC10073002 DOI: 10.5213/inj.2244236.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose: To investigate the effect of detrusor overactivity (DO) on the urethral expression of caveolin (CAV)-1, -2, and -3 of urethra in an animal model of cyclophosphamide (CYP)-induced cystitis rat.Methods: Female Sprague-Dawley rats were divided into the control group (n=20) and the cystitis group (n=20). Cystitis was induced by intraperitoneal injection of CYP (200 mg/kg). An urodynamic study was done 3 days after the CYP injection to measure functional change of the urinary bladder and urethra. Cellular localization and expression of CAV-1, -2, and -3 in the rat urethra were determined by immunohistochemistry (IHC) and Western blot.Results: Urodynamic experiments demonstrated a decreased contraction interval in the cystitis group compared to the control (3.9±1.0 minutes vs. 6.6±1.2 minutes, P<0.05). Conversely, contraction pressure increased significantly in the cystitis group compared to the control (22.4±0.7 mmHg vs. 11.5±0.4 mmHg, P<0.05). The urethral pressure was decreased in the cystitis group compared to the control (4.05 ±2.5 mmHg vs. 5.8 ±2.8 mmHg, P <0.05). The IHC and Western blot data showed that CAV-1, -2, and -3 expression decreased significantly in the cystitis group compared control group (P<0.05).Conclusions: The decreased urethral CAV-1, -2, and -3 in the DO rats suggests that CAVs might be related with the functional change of urethra in association with DO of urinay bladder.
Collapse
|
4
|
Ito H, Drake MJ, Fry CH, Kanai AJ, Pickering AE. Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation. Neurourol Urodyn 2018; 37:1302-1312. [PMID: 29333621 PMCID: PMC5947622 DOI: 10.1002/nau.23471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
AIM To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. METHODS Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer's solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a "pithed" DAPM which has no brainstem or spinal cord control. RESULTS Functional micturition cycles were observed in response to bladder filling. During each void, the bladder showed strong contractions and the external urethral sphincter (EUS) showed bursting activity. Both the frequency and amplitude of non-voiding contractions (NVCs) in DAPM and putative micromotions (pMM) in pithed DAPM increased with bladder filling. Vasopressin (>400 pM) caused dyssynergy of the LUT resulting in retention in DAPM as it increased tonic EUS activity and basal bladder pressure in a dose-dependent manner (basal pressure increase also noted in pithed DAPM). Both neuromuscular blockade (vecuronium) and autonomic ganglion blockade (hexamethonium), initially caused incomplete voiding, and both drugs eventually stopped voiding in DAPM. Intravesical acetic acid (0.2%) decreased the micturition interval. Recordings from the pelvic nerve in the pithed DAPM showed bladder distention-induced activity in the non-noxious range which was associated with pMM. CONCLUSIONS This study demonstrates the utility of the DAPM which allows a detailed characterization of LUT function in mice.
Collapse
Affiliation(s)
- Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Marcus J Drake
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anthony J Kanai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|