1
|
Seleem MA, Salem OM, Basha E, Ibrahim HA, Elshamy AM, Azzam AR, Ismail R, Homouda AA, Elkordy A, Faheem H. The Protective Effects of Saxagliptin and Cilostazol in an Experimental Model of Cyclophosphamide-Induced Nephrotoxicity in Rats: Targeting iNOS/NF-kB and Nrf-2/HO-1 Pathways. J Biochem Mol Toxicol 2025; 39:e70196. [PMID: 40025827 DOI: 10.1002/jbt.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Cyclophosphamide (CYP) is an extensively used immunosuppressive drug and chemotherapeutic agent for various malignancies. Nevertheless, its use is limited due to adverse effects, including nephrotoxicity. Saxagliptin is a DPP4 inhibitor, while cilostazol serves as an antiplatelet agent. Their nephroprotective effects arise from antioxidant and anti-inflammatory properties. This study investigated the potential protective effects of Saxagliptin and Cilostazol in rats with kidney damage induced by CYP. Five equal groups of 50 male Wistar rats were randomly categorised as Group I (Control group), Group II: CYP untreated nephrotoxicity-induced group, Group III: Nephrotoxicity-induced group treated with saxagliptin, Group IV: Nephrotoxicity-induced group treated with cilostazol, and Group V: Nephrotoxicity-induced group treated with saxagliptin and cilostazol. Renal tissues and blood samples were collected for biochemical analysis of urea, creatinine, and acute kidney injury biomarkers, including Kim-1 and NGAL. Additionally, oxidative stress and inflammatory biomarkers such as GSH, MDA, TNF-α and IL-1β were assessed, along with gene expression of Nrf-2/HO-1 and NF-kB. Immunohistochemical analysis of iNOS, and histopathological study were also conducted. Saxagliptin and cilostazol ameliorated the nephrotoxicity induced by CYP, as indicated by improvements in urea, creatinine, and acute kidney injury biomarkers Kim-1 and NGAL. Furthermore, there was a decrease in oxidative stress via the upregulation of Nrf-2/HO-1, increased levels of GSH, downregulation of MDA and decreased inflammation via the downregulation of TNF-α, IL-1β and iNOS/NF-kB. The combination of saxagliptin and cilostazol demonstrated a significant improvement compared to using each agent individually. The combination of Saxagliptin/Cilostazol is superior to monotherapy by either of each alone in preventing CYP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Monira A Seleem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola M Salem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Basha
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Basic Medical Sciences, Physiology, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira Mostafa Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa R Azzam
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Ismail
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdallah A Homouda
- Department of Urology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa Elkordy
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Faheem
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Zhang Y, Li K, Li Y, Zhao W, Wang L, Chen Z, Ma X, Yao T, Wang J, Dong W, Li X, Tian X, Fu R. Profibrotic mechanisms of DPP8 and DPP9 highly expressed in the proximal renal tubule epithelial cells. Pharmacol Res 2021; 169:105630. [PMID: 33932609 DOI: 10.1016/j.phrs.2021.105630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms. METHODS We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model. RESULTS We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-β1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-β1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9. CONCLUSION These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.
Collapse
Affiliation(s)
- Yuzhan Zhang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Yan Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Weihao Zhao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Zhao Chen
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Tian Yao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinhua Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Wei Dong
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiancheng Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China.
| |
Collapse
|
3
|
Nistala R, Meuth AI, Smith C, An J, Habibi J, Hayden MR, Johnson M, Aroor A, Whaley-Connell A, Sowers JR, McKarns SC, Bender SB. DPP4 inhibition mitigates ANG II-mediated kidney immune activation and injury in male mice. Am J Physiol Renal Physiol 2021; 320:F505-F517. [PMID: 33522410 DOI: 10.1152/ajprenal.00565.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.
Collapse
Affiliation(s)
- Ravi Nistala
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alex I Meuth
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Cassandra Smith
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jianzhong An
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - M R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Megan Johnson
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Annayya Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Adam Whaley-Connell
- Divisions of Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri.,Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Divisions of Endocrinology and Metabolism, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Susan C McKarns
- Departments of Microbiology and Immunology and Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Shawn B Bender
- Department of Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Nicotera R, Casarella A, Longhitano E, Bolignano D, Andreucci M, De Sarro G, Cernaro V, Russo E, Coppolino G. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res 2020; 159:105019. [PMID: 32553713 DOI: 10.1016/j.phrs.2020.105019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Diabetes Mellitus (DM) is a chronic and severe metabolic disease, characterized by chronic hyperglycemia due to insulin resistance and/or reduced insulin secretion. Concerning the non-insulin glucose-lowering therapy for diabetes, Dipeptidyl-peptidase-4 (DPP-4) inhibitors, members of the incretin family, represent new agents, capable of a glycemic control improvement with an advantageous safety profile, given the absence of weight gain, the low incidence of hypoglycemia and the good renal tolerance in patients suffering from chronic renal failure. In addition to demonstrating efficacy in glycemic control through inhibition of GLP-1 degradation, DPP-4 inhibitors (DPP-4is) seem to demonstrate pleiotropic effects, which also make them interesting in both diabetic and non-diabetic nephropathies, especially for their capacity of reducing proteinuria. Several studies about diabetic nephropathy on patients' cohorts and murine models have demonstrated a solid direct relationship between DPP-4 activity and urinary albumin excretion (UAE), thus confirming the capacity of DPP-4is to reduce proteinuria; the mechanism responsible for that effect was studied to assess if it was the result of a direct action on renal impairment or a secondary consequence of the better glycemic control related to these agents. As a result of these more in-depth studies, DPP-4is have demonstrated an improvement of renal inflammation markers and consequent proteinuria reduction, regardless of glucose concentrations. Considering the nephroprotective effects of DPP-4is might be glycemic independent, several studies were conducted to prove the validity of the same effects in non-diabetic nephropathies. Among these studies, DPP-4is demonstrated an improvement of various renal inflammatory markers on several models of non-diabetes dependent renal impairment, confirming their capacity to reduce proteinuria, independently from the action on glucose metabolism. The objective of this review is to present and discuss the so far demonstrated antiproteinuric effect of DPP-4is and their effects on diabetic and non-diabetic nephropathies.
Collapse
Affiliation(s)
- Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Elisa Longhitano
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Valeria Cernaro
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy.
| |
Collapse
|
5
|
Kamel NM, Abd El Fattah MA, El-Abhar HS, Abdallah DM. Novel repair mechanisms in a renal ischaemia/reperfusion model: Subsequent saxagliptin treatment modulates the pro-angiogenic GLP-1/cAMP/VEGF, ANP/eNOS/NO, SDF-1α/CXCR4, and Kim-1/STAT3/HIF-1α/VEGF/eNOS pathways. Eur J Pharmacol 2019; 861:172620. [PMID: 31437429 DOI: 10.1016/j.ejphar.2019.172620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
The reno-protective effects of antidiabetic dipeptidyl peptidase (DPP)-4 inhibitors have been studied regarding their antioxidant and anti-inflammatory properties. However, the potential ability of saxagliptin to ameliorate renal injury by enhancing neovascularization has not been elucidated. To address this issue, saxagliptin (10 and 30 mg/kg) was administered to Wistar rats after the induction of renal ischaemia/reperfusion (I/R). Our results showed that saxagliptin operated through different axes to ameliorate I/R injury. By inhibiting DPP-4, saxagliptin maintained stromal cell-derived factor-1α expression and upregulated its chemokine receptor CXCR4 to trigger vasculogenesis through the enhanced migration of endothelial progenitor cells (EPCs). Additionally, this compound rescued the levels of glucagon-like peptide-1 and its downstream mediator cAMP to increase vascular endothelial growth factor (VEGF) and CXCR4 levels. Moreover, saxagliptin stimulated atrial natriuretic peptide/endothelial nitric oxide synthase to increase nitric oxide levels and provoke angiogenesis and renal vasodilation. In addition to inhibiting DPP-4, saxagliptin increased the renal kidney injury molecule-1/pY705-STAT3/hypoxia-inducible factor-1α/VEGF pathway to enhance angiogenesis. Similar to other gliptins, saxagliptin exerted its anti-inflammatory and antioxidant effects by suppressing the renal contents of p (S536)-nuclear factor-κB p65, tumour necrosis factor-α, monocyte chemoattractant protein-1, myeloperoxidase, and malondialdehyde while boosting the glutathione content. These events improved the histological structure and function of the kidney, as evidenced by decreased serum creatinine, blood urea nitrogen, and cystatin C and increased serum albumin. Accordingly, in addition to its anti-inflammatory and antioxidant activities, saxagliptin dose-dependently ameliorated I/R-induced renal damage by enhancing neovascularization through improved tissue perfusion and homing of bone marrow-derived EPCs to mediate repair processes.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Abdelrahman AM, Suleimani YA, Za'abi MA, Ashique M, Manoj P, Hartmann C, Nemmar A, Schupp N, Ali BH. The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats. Biomed Pharmacother 2019; 110:667-676. [DOI: 10.1016/j.biopha.2018.11.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022] Open
|
7
|
Cappetta D, Ciuffreda LP, Cozzolino A, Esposito G, Scavone C, Sapio L, Naviglio S, D'Amario D, Crea F, Rossi F, Berrino L, De Angelis A, Urbanek K. Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8912768. [PMID: 30774748 PMCID: PMC6350609 DOI: 10.1155/2019/8912768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2018] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases frequently coexist with chronic kidney disease that constitutes a major determinant of outcome in patients with heart failure. Dysfunction of both organs is related to chronic inflammation, endothelial dysfunction, oxidative stress, and fibrosis. Widespread expression of serine protease DPP4 that degrades varieties of substrates suggests its involvement in numerous physiological processes. In this study, we tested the effects of selective DPP4 inhibition on the progression of renal disease in a nondiabetic model of hypertensive heart disease using Dahl salt-sensitive rats. Chronic DPP4 inhibition positively affected renal function with a significant reduction in albuminuria and serum creatinine. DPP4 inhibition attenuated the inflammatory component by reducing the expression of NF-κB, TNFα, IL-1β, IL-6, and MCP-1. Kidney macrophages expressed GLP-1R, and DPP4 inhibition promoted macrophage polarization toward the anti-inflammatory M2 phenotype. Finally, high degrees of NADPH oxidase 4 expression and oxidation of nucleic acids, lipids, and proteins were reduced upon DPP4 inhibition. Our study provides evidence of renoprotection by DPP4 inhibition in a nondiabetic hypertension-induced model of chronic cardiorenal syndrome, indicating that DPP4 pathway remains a valid object to study in the context of chronic multiorgan diseases.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Cozzolino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Domenico D'Amario
- Institute of Cardiology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Filippo Crea
- Institute of Cardiology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
8
|
Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant, anti-inflammatory and anti-apoptic effects. Life Sci 2018; 208:64-71. [DOI: 10.1016/j.lfs.2018.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023]
|
9
|
Renal outcomes with dipeptidyl peptidase-4 inhibitors. DIABETES & METABOLISM 2017; 44:101-111. [PMID: 29146035 DOI: 10.1016/j.diabet.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is) are increasingly being used in the management of type 2 diabetes (T2D). The present review summarizes the current knowledge of the effects of DPP-4is on renal outcomes by analyzing the experimental preclinical data, the effects of DPP-4is on urinary albumin-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFRs) from observational studies and clinical trials, and renal events (including kidney failure requiring renal replacement therapy) in recent large prospective cardiovascular outcome trials. Renal protection has been demonstrated in various animal models that have implicated different underlying mechanisms independent of glucose control, whereas prevention of new onset microalbuminuria and/or progression of albuminuria has been reported in some clinical studies, but with no significant effects on eGFR in most of them. The long-term clinical effects of DPP-4is on renal outcomes and the development of end-stage renal disease remain largely unknown and, thus, demand further investigations in prospective trials and long-term observational studies. In conclusion, despite promising results in animal models, data on surrogate biological markers of renal function and clinical renal outcomes remain rather scanty in patients with T2D, and mostly demonstrate the safety rather than true efficacy of DPP-4is.
Collapse
|
10
|
Uchii M, Sakai M, Hotta Y, Saeki S, Kimoto N, Hamaguchi A, Kitayama T, Kunori S. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo. J Pharmacol Sci 2017; 135:126-130. [PMID: 29113790 DOI: 10.1016/j.jphs.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4.
Collapse
Affiliation(s)
- Masako Uchii
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Mariko Sakai
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yuhei Hotta
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Satoshi Saeki
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Naoya Kimoto
- Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akinori Hamaguchi
- Research Function Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Tetsuya Kitayama
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shunji Kunori
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| |
Collapse
|
11
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
12
|
Mietlicki-Baase EG, McGrath LE, Koch-Laskowski K, Krawczyk J, Pham T, Lhamo R, Reiner DJ, Hayes MR. Hindbrain DPP-IV inhibition improves glycemic control and promotes negative energy balance. Physiol Behav 2017; 173:9-14. [PMID: 28119159 DOI: 10.1016/j.physbeh.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
The beneficial glycemic and food intake-suppressive effects of glucagon-like peptide-1 (GLP-1) have made this neuroendocrine system a leading target for pharmacological approaches to the treatment of diabetes and obesity. One strategy to increase the activity of endogenous GLP-1 is to prevent the rapid degradation of the hormone by the enzyme dipeptidyl peptidase-IV (DPP-IV). However, despite the expression of both DPP-IV and GLP-1 in the brain, and the clear importance of central GLP-1 receptor (GLP-1R) signaling for glycemic and energy balance control, the metabolic effects of central inhibition of DPP-IV activity are unclear. To test whether hindbrain DPP-IV inhibition suppresses blood glucose, feeding, and body weight gain, the effects of 4th intracerebroventricular (ICV) administration of the FDA-approved DPP-IV inhibitor sitagliptin were evaluated. Results indicate that hindbrain delivery of sitagliptin improves glycemic control in a GLP-1R-dependent manner, suggesting that this effect is due at least in part to increased endogenous brainstem GLP-1 activity after sitagliptin administration. Furthermore, 4th ICV injection of sitagliptin reduced 24h body weight gain and energy intake, with a selective suppression of high-fat diet, but not chow, intake. These data reveal a novel role for hindbrain GLP-1R activation in glycemic control and also demonstrate that DPP-IV inhibition in the caudal brainstem promotes negative energy balance.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lauren E McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joanna Krawczyk
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tram Pham
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David J Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
13
|
Ikeda J, Kimoto N, Kitayama T, Kunori S. Cardiac DPP-4 inhibition by saxagliptin ameliorates isoproterenol-induced myocardial remodeling and cardiac diastolic dysfunction in rats. J Pharmacol Sci 2016; 132:65-70. [PMID: 27666017 DOI: 10.1016/j.jphs.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/25/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022] Open
Abstract
Saxagliptin, a potent and selective DPP-4 inhibitor, is characterized by its slow dissociation from DPP-4 and its long half-life and is expected to have a potent tissue membrane-bound DPP-4-inhibitory effect in various tissues. In the present study, we examined the effects of saxagliptin on in situ cardiac DPP-4 activity. We also examined the effects of saxagliptin on isoproterenol-induced the changes in the early stage such as, myocardial remodeling and cardiac diastolic dysfunction. Male SD rats treated with isoproterenol (1 mg/kg/day via osmotic pump) received vehicle or saxagliptin (17.5 mg/kg via drinking water) for 2 weeks. In situ cardiac DPP-4 activity was measured by a colorimetric assay. Cardiac gene expressions were examined and an echocardiographic analysis was performed. Saxagliptin treatment significantly inhibited in situ cardiac DPP-4 activity and suppressed isoproterenol-induced myocardial remodeling and the expression of related genes without altering the blood glucose levels. Saxagliptin also significantly ameliorated cardiac diastolic dysfunction in isoproterenol-treated rats. In conclusion, the inhibition of DPP-4 activity in cardiac tissue by saxagliptin was associated with suppression of myocardial remodeling and cardiac diastolic dysfunction independently of its glucose-lowering action in isoproterenol-treated rats. Cardiac DPP-4 activity may contribute to myocardial remodeling in the development of heart failure.
Collapse
Affiliation(s)
- Junichi Ikeda
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Naoya Kimoto
- Research Core Function Laboratories, Research Function Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Tetsuya Kitayama
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shunji Kunori
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| |
Collapse
|
14
|
Extrapancreatic contribution to glucose regulation by dipeptidyl peptidase 4 inhibition. Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Uchii M, Kimoto N, Sakai M, Kitayama T, Kunori S. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol 2016; 783:56-63. [DOI: 10.1016/j.ejphar.2016.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
|
16
|
Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. DIABETES MELLITUS 2016; 19:53-63. [DOI: 10.14341/dm7727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Glucagon like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors are new classes of hypoglycemic agents with numerous pleiotropic effects. The review summarises data about the influence of GLP-1 analogues and DPP-4 inhibitors on structural and functional changes in diabetic kidneys. Growing evidence indicates that the kidney is one of the loci of the effects and degradation of GLP-1. The potency of the effects of GLP-1 in diabetic kidneys can be reduced by decrease in GLP-1 receptor expression or enhancement of GLP-1 degradation. In experimental models of diabetic nephropathy and non-diabetic renal injury, GLP-1 analogues and DPP-4 inhibitors slow the development of kidney fibrosis and prevent the decline of kidney function. The mechanisms of protective effect include hyperglycaemia reduction, enhancement of sodium excretion, suppression of inflammatory and fibrogenic signalling pathways, reduction of oxidative stress and apoptosis in the kidneys. In clinical studies, the urinary albumin excretion reduction rate while using the GLP-1 analogue and DPP-4 inhibitor treatment was demonstrated in patients with type 2 diabetes. Long-term impact of these agents on renal function in diabetes needs further investigations.
Collapse
|