1
|
Llewelyn VK, Sitovs A, Tikhomirov M, Sartini I, Kim TW, Tabari MA, Poźniak B, Kadir AA, Milanova A, Vercelli C, Giorgi M. Journal clubs: an educational tool for veterinary practitioners. J Am Vet Med Assoc 2020; 256:869-871. [PMID: 32223708 DOI: 10.2460/javma.256.8.869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Bock C, Surur AS, Beirow K, Kindermann MK, Schulig L, Bodtke A, Bednarski PJ, Link A. Sulfide Analogues of Flupirtine and Retigabine with Nanomolar K V 7.2/K V 7.3 Channel Opening Activity. ChemMedChem 2019; 14:952-964. [PMID: 30861620 DOI: 10.1002/cmdc.201900112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 12/18/2022]
Abstract
The potassium channel openers flupirtine and retigabine have proven to be valuable analgesics or antiepileptics. Their recent withdrawal due to occasional hepatotoxicity and tissue discoloration, respectively, leaves a therapeutic niche unfilled. Metabolic oxidation of both drugs gives rise to the formation of electrophilic quinones. These elusive, highly reactive metabolites may induce liver injury in the case of flupirtine and blue tissue discoloration after prolonged intake of retigabine. We examined which structural features can be altered to avoid the detrimental oxidation of the aromatic ring and shift oxidation toward the formation of more benign metabolites. Structure-activity relationship studies were performed to evaluate the KV 7.2/3 channel opening activity of 45 derivatives. Sulfide analogues were identified that are devoid of the risk of quinone formation, but possess potent KV 7.2/3 opening activity. For example, flupirtine analogue 3-(3,5-difluorophenyl)-N-(6-(isobutylthio)-2-(pyrrolidin-1-yl)pyridin-3-yl)propanamide (48) has 100-fold enhanced activity (EC50 =1.4 nm), a vastly improved toxicity/activity ratio, and the same efficacy as retigabine in vitro.
Collapse
Affiliation(s)
- Christian Bock
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Abdrrahman S Surur
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Kristin Beirow
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Markus K Kindermann
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Anja Bodtke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| |
Collapse
|
3
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
4
|
Lawson K. Pharmacology and clinical applications of flupirtine: Current and future options. World J Pharmacol 2019; 8:1-13. [DOI: 10.5497/wjp.v8.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits pharmacological properties leading to the suppression of over-excitability of neuronal and non-neuronal cells. Consequently, this drug has been used as a centrally acting analgesic in patients with a range of acute and persistent pain conditions without the adverse effects characteristic of opioids and non-steroidal anti-inflammatory drug and is well tolerated. The pharmacological profile exhibited involves actions on several cellular targets, including Kv7 channels, G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A receptors, but also there is evidence of additional as yet unidentified mechanisms of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a range of cells and tissues related to the locations of these targets. In additional to analgesia, flupirtine has demonstrated pharmacological properties consistent with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in treatment of auditory and visual disorders, and treatment of memory and cognitive impairment. Flupirtine is providing important information and clues regarding novel mechanistic approaches to the treatment of a range of clinical conditions involving hyper-excitability of cells. Identification of molecules exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions of flupirtine will provide further insight into clinical applications. Whether the broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to gain benefit, especially in complex clinical conditions, requires further investigation. This review will consider recent advancement in understanding of the pharmacological profile and related clinical applications of flupirtine.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
5
|
Barreras-Espinoza I, Soto-Zambrano JA, Serafín-Higuera N, Zapata-Morales R, Alonso-Castro Á, Bologna-Molina R, Granados-Soto V, Isiordia-Espinoza MA. The Antinociceptive Effect of a Tapentadol-Ketorolac Combination in a Mouse Model of Trigeminal Pain is Mediated by Opioid Receptors and ATP-Sensitive K + Channels. Drug Dev Res 2017; 78:63-70. [PMID: 27987222 DOI: 10.1002/ddr.21373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023]
Abstract
Preclinical Research The aim of the present study was to evaluate the antinoceptive interaction between the opioid analgesic, tapentadol, and the NSAID, ketorolac, in the mouse orofacial formalin test. Tapentadol or ketorolac were administered ip 15 min before orofacial formalin injection. The effect of the individual drugs was used to calculate their ED50 values and different proportions (tapentadol-ketorolac in 1:1, 3:1, and 1:3) were assayed in the orofacial test using isobolographic analysis and interaction index to evaluate the interaction between the drugs. The combination showed antinociceptive synergistic and additive effects in the first and second phase of the orofacial formalin test. Naloxone and glibenclamide were used to evaluate the possible mechanisms of action and both partially reversed the antinociception produced by the tapentadol-ketorolac combination. These data suggest that the mixture of tapentadol and ketorolac produces additive or synergistic interactions via opioid receptors and ATP-sensitive K+ channels in the orofacial formalin-induced nociception model in mice. Drug Dev Res 78 : 63-70, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Israel Barreras-Espinoza
- Departamento de Farmacología, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, México
| | - José Alberto Soto-Zambrano
- Departamento de Farmacología, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, México
| | - Nicolás Serafín-Higuera
- Departamento de Farmacología, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, México
| | - Ramón Zapata-Morales
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Ángel Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Ronell Bologna-Molina
- Departamento de Investigación, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Ciudad de México, México
| | - Mario A Isiordia-Espinoza
- Departamento de Farmacología, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, México
- Departamento de Investigación, Escuela de Odontología, Universidad Cuauhtémoc, San Luis Potosí, México
| |
Collapse
|
6
|
Giorgi M, De Vito V, Poapolathep A, Rychshanova R, Sgorbini M, Owen H. Pharmacokinetics and disposition of flupirtine in the horse. Vet J 2015; 208:76-80. [PMID: 26681139 DOI: 10.1016/j.tvjl.2015.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 05/26/2015] [Accepted: 08/15/2015] [Indexed: 01/15/2023]
Abstract
Flupirtine (FLU) is a non-opioid analgesic drug, with no antipyretic or anti-inflammatory effects, used in the treatment of a wide range of pain states in human beings. It does not induce the side effects associated with the classical drugs used as pain relievers. The aim of this study was to evaluate the pharmacokinetic profiles of FLU after IV and PO administration in healthy horses. Six mixed breed adult mares were randomly assigned to two treatment groups using an open, single-dose, two-treatment, two-phase, paired, cross-over design (2 × 2 Latin-square). Group 1 (n = 3) received a single dose of 1 mg/kg of FLU injected IV into the jugular vein. Group 2 (n = 3) received FLU (5 mg/kg) via nasogastric tube. The animals then swapped groups after a 1-week wash-out period and the doses were repeated. Blood samples (5 mL) were collected at 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, 24, 36 and 48 h and plasma was then analysed by a validated HPLC method. Some mild and transient adverse effects (that spontaneously resolved within 5 min) were observed in 2/6 animals after IV administration. No adverse effects were noticed in the PO administration group. After IV and PO administrations, FLU was detectable in plasma for up to 36 h. The mean elimination half-life was longer after PO (10.27 h) than after IV (3.02 h) administration. The oral bioavailability was 71.4 ± 33.1%. After compartmental simulation/modelling, an oral dose of 2.6 mg/kg was calculated to give Cmax and AUC values in horses similar to those reported in humans after a clinical dose administration with a theoretical FLU effective plasma concentration of 187 ng/mL. These findings may form the basis for further studies concerning this active ingredient in equine medicine.
Collapse
Affiliation(s)
- M Giorgi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, Italy.
| | - V De Vito
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, Italy
| | - A Poapolathep
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, University of Kasetsart, Bangkok, Thailand
| | - R Rychshanova
- Veterinary School, Kostanay State A. Baitursynov University, Kostanay, Kazakhstan
| | - M Sgorbini
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, Italy
| | - H Owen
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland 4343, Australia
| |
Collapse
|