1
|
Gao Q, Ni P, Wang Y, Huo P, Zhang X, Wang S, Xiao F, Li Y, Feng W, Yuan J, Zhang T, Li Q, Fan B, Kan Y, Li Z, Qi Y, Xing J, Yang Z, Cheng H, Gao X, Feng X, Xue M, Liu Y, Luo Y, Lu Z, Zhao Y. DDAH1 promotes neurogenesis and neural repair in cerebral ischemia. Acta Pharm Sin B 2024; 14:2097-2118. [PMID: 38799640 PMCID: PMC11119513 DOI: 10.1016/j.apsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.
Collapse
Affiliation(s)
- Qiming Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinfei Ni
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yilin Wang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Peiyun Huo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fuyao Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Zhang
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boyu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhao Kan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhirui Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yimiao Qi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Junfei Xing
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhenghong Yang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haixiao Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinran Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Hu KB, Lu XM, Wang HY, Liu HL, Wu QY, Liao P, Li S, Long ZY, Wang YT. Effects and mechanisms of tanshinone IIA on PTSD-like symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155032. [PMID: 37611463 DOI: 10.1016/j.phymed.2023.155032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND In recent years, Salvia miltiorrhiza and its active substances have remarkably progressed in treating central neurological disorders. Tanshinone IIA (TSA) is an active ingredient derived from the rhizome of Salvia miltiorrhiza that has been found to alleviate the symptoms of several psychiatric illnesses. Post-traumatic stress disorder (PTSD) is a mental disorder that results after experiencing a serious physical or psychological injury. The currently used drugs are not satisfactory for the treatment of PTSD. However, it has been reported that TSA can improve PTSD-like symptoms like learning and memory, cognitive disorder, and depression through multi-target regulation. PURPOSE This paper discusses the ameliorative effects of TSA on PTSD-like symptoms and the possible mechanisms of action in terms of inhibition of neuronal apoptosis, anti-neuroinflammation, and anti-oxidative stress. Based on the pathological changes and clinical observations of PTSD, we hope to provide some reference for the clinical transformation of Chinese medicine in treating PTSD. METHODS A large number of literatures on tanshinone in the treatment of neurological diseases and PTSD were retrieved from online electronic PubMed and Web of Science databases. CONCLUSION TSA is a widely studied natural active ingredient against mental illness. This review will contribute to the future development of TSA as a new clinical candidate drug for improving PTSD-like symptoms.
Collapse
Affiliation(s)
- Kai-Bin Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
6
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
7
|
Xiao F, Zhang X, Ni P, Yu H, Gao Q, Li M, Huo P, Wei Z, Wang S, Zhang Y, Zhao R, Li A, Li Z, Li Y, Cheng H, Du L, Ren S, Yu Q, Liu Y, Zhao Y. Voltage-dependent potassium channel Kv4.2 alleviates the ischemic stroke impairments through activating neurogenesis. Neurochem Int 2021; 150:105155. [PMID: 34384853 DOI: 10.1016/j.neuint.2021.105155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
As well as their ion transportation function, the voltage-dependent potassium channels could act as the cell signal inducer in a variety of pathogenic processes. However, their roles in neurogenesis after stroke insults have not been clearly illustrated. In our preliminary study, the expressions of voltage-dependent potassium channels Kv4.2 was significantly decreased after stroke in cortex, striatum and hippocampus by real-time quantitative PCR assay. To underlie the neuroprotection of Kv4.2 in stroke rehabilitation, recombinant plasmids encoding the cDNAs of mouse Kv4.2 was constructed. Behavioral tests showed that the increased Kv4.2 could be beneficial to the recovery of the sensory, the motor functions and the cognitive deficits after stroke. Temozolomide (TMZ), an inhibitor of neurogenesis, could partially abolish the mentioned protections of Kv4.2. The immunocytochemical staining showed that Kv4.2 could promote the proliferations of neural stem cells and induce the neural stem cells to differentiate into neurons in vitro and in vivo. And Kv4.2 could up-regulate the expressions of ERK1/2, p-ERK1/2, p-STAT3, NGF, p-TrkA, and BDNF, CAMKII and the concentration of intracellular Ca2+. Namely, we concluded that Kv4.2 promoted neurogenesis through ERK1/2/STAT3, NGF/TrkA, Ca2+/CAMKII signal pathways and rescued the ischemic impairments. Kv4.2 might be a potential drug target for ischemic stroke intervention.
Collapse
Affiliation(s)
- Fuyao Xiao
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Pinfei Ni
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Qiming Gao
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Mengyao Li
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Peiyun Huo
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Ziwei Wei
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Rui Zhao
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Aixue Li
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China; Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Zhirui Li
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Yuejia Li
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Haixiao Cheng
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Suping Ren
- Beijing Institute of Transfusion Medicine, Beijing, 100850, PR China
| | - Qun Yu
- Beijing Institute of Transfusion Medicine, Beijing, 100850, PR China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Science, Capital Medical University, Beijing, PR China.
| |
Collapse
|
8
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
9
|
Ye N, Cruz J, Peng X, Ma J, Zhang A, Cheng X. Remyelination is enhanced by Astragalus polysaccharides through inducing the differentiation of oligodendrocytes from neural stem cells in cuprizone model of demyelination. Brain Res 2021; 1763:147459. [PMID: 33794147 DOI: 10.1016/j.brainres.2021.147459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 01/03/2023]
Abstract
Demyelination is the hallmark of multiple sclerosis (MS). Promoting remyelination is an important strategy to treat MS. Our previous study showed that Astragalus polysaccharides (APS), the main bioactive component of Astragalus membranaceus, could prevent demyelination in experimental autoimmune encephalomyelitis mice. To investigate the effects of APS on remyelination and the underlying mechanisms, in this study we set up a cuprizone-induced demyelination model in mice and treated them with APS. It was found that APS relieved the neurobehavioral dysfunctions caused by demyelination, and efficaciously facilitated remyelination in vivo. In order to determine whether the mechanism of enhancing remyelination was associated with the differentiation of neural stem cells (NSCs), biomarkers of NSCs, astrocytes, oligodendrocytes and neurons were measured in the corpus callosum tissues of mice through Real-time PCR, Western blot and immunohistochemistry assays. Data revealed that APS suppressed the stemness of NSCs, reduced the differentiation of NSCs into astrocytes, and promoted the differentiation into oligodendrocytes and neurons. This phenomenon was confirmed in the differentiation model of C17.2 NSCs cultured in vitro. Since Sonic hedgehog signaling pathway has been proven to be crucial to the differentiation of NSCs into oligodendrocytes, we examined expression levels of the key molecules in this pathway in vivo and in vitro, and eventually found APS activated this signaling pathway. Together, our results demonstrated that APS probably activated Sonic hedgehog signaling pathway first, then induced NSCs to differentiate into oligodendrocytes and promoted remyelination, which suggested that APS might be a potential candidate in treating MS.
Collapse
Affiliation(s)
- Ni Ye
- Institute of Clinical Immunology, Yue-Yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Jennifer Cruz
- Institute of Clinical Immunology, Yue-Yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China; Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, FL 33301, USA
| | - Xiaoyan Peng
- Institute of Clinical Immunology, Yue-Yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-Yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Aiming Zhang
- Department of Neurology, Min-Hang Hospital of Integrative Medicine, Shanghai 200241, PR China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-Yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.
| |
Collapse
|
10
|
Yang W, Geng C, Yang Z, Xu B, Shi W, Yang Y, Tian Y. Deciphering the roles of caveolin in neurodegenerative diseases: The good, the bad and the importance of context. Ageing Res Rev 2020; 62:101116. [PMID: 32554058 DOI: 10.1016/j.arr.2020.101116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDDs), which contribute to progressive and irreversible impairments of both the structure and function of the nervous system, pose a substantial socioeconomic burden on society. Mitochondrial dysfunction, oxidative stress, membrane damage, DNA damage, and abnormal protein degradation pathways play pivotal roles in the etiology of NDDs. Recently, growing evidence has demonstrated that caveolins are important in the pathology of NDDs due to their cellular functions in signal transduction, endocytosis, transcytosis, cholesterol transport, and lipid homeostasis. Given the significance of caveolins, here we review the literature to clarify their molecular mechanisms and roles in NDDs. We first briefly introduce the general background on caveolins. Next, we focus on the various important functions of caveolins in the brain. Finally, we emphasize recent progress regarding caveolins, especially Cav-1, which exert both benefit and unfavorable effects in NDDs such as AD and PD. Collectively, the data presented here should advance the investigation of caveolins for the future development of innovative strategies for the treatment of NDDs.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chenhui Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Wenzhen Shi
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Ye Tian
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
11
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
12
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
13
|
Network pharmacology based investigation of the effects of herbal ingredients on the immune dysfunction in heart disease. Pharmacol Res 2019; 141:104-113. [DOI: 10.1016/j.phrs.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
14
|
L-NBP, a multiple growth factor activator, attenuates ischemic neuronal impairments possibly through promoting neuritogenesis. Neurochem Int 2019; 124:94-105. [DOI: 10.1016/j.neuint.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|
15
|
Chen Z, Hu Q, Xie Q, Wu S, Pang Q, Liu M, Zhao Y, Tu F, Liu C, Chen X. Effects of Treadmill Exercise on Motor and Cognitive Function Recovery of MCAO Mice Through the Caveolin-1/VEGF Signaling Pathway in Ischemic Penumbra. Neurochem Res 2019; 44:930-946. [DOI: 10.1007/s11064-019-02728-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
16
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
17
|
Gao C, Wang Q, Chung SK, Shen J. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases. Neurochem Int 2017; 106:24-36. [DOI: 10.1016/j.neuint.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
|
18
|
Abstract
Genus Salvia, commonly known as sage, is the largest genus in the Lamiaceae family. It comprises many species traditionally used as brain-enhancing tonics. In vitro and animal studies have confirmed that several Salvia species contain a large array of active compounds that may enhance cognitive activity and protect against neurodegenerative disease. In this review, the active constituents in plants belonging to the genus Salvia are summarised, and their influence on pharmacodynamics pertinent to cognitive activity are detailed. In particular, the effects of plants belonging to the genus Salvia and their constituents on cognitive skills including memory, attention and learning are detailed. Their potential effects in dementia, including Alzheimer’s disease, are also examined. Completed human trials are summarised, and factors influencing the potency of Salvia plants are covered. Finally, directions for future research are proposed to enhance our understanding of the potential health benefits of Salvia plants.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
19
|
Tanshinones and mental diseases: from chemistry to medicine. Rev Neurosci 2016; 27:777-791. [DOI: 10.1515/revneuro-2016-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe prevalence of mental diseases, especially neurodegenerative disorders, is ever-increasing, while treatment options for such disorders are limited and insufficient. In this scarcity of available medication, it is a feasible strategy to search for potential drugs among natural compounds, such as those found in plants. One such plant source is the root of Chinese sage, Salvia miltiorrhiza Bunge (Labiatae), which contains several compounds reported to possess neuroprotective activities. The most important of these compounds are tanshinones, which have been reported to possess ameliorative activity against a myriad of mental diseases such as Alzheimer’s disease, cerebral ischemia/reperfusion injury, and glioma, along with promoting neuronal differentiation and manifesting antinociceptive and anticonvulsant outcomes. This review offers a critical evaluation of the utility of tanshinones to treat mental illnesses, and sheds light on the underlying mechanisms through which these naturally occurring compounds confer neuroprotection.
Collapse
|