1
|
Yang C, Na X, Yang H, Xi M, Yang Y, Yan Y, Duan S, Li T, Szeto IMY, Zhao A. Maternal sleep and psychological status in the postpartum period are associated with functional protein alterations in breast milk:a mother-infant cohort study. Clin Nutr ESPEN 2025; 67:510-522. [PMID: 40187732 DOI: 10.1016/j.clnesp.2025.03.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND & AIMS Postpartum sleep disorder and mental disorders are common unpleasant conditions faced by women after delivery, and they have many adverse effects on both mothers and infants. It is unclear whether breast milk composition is affected by maternal sleep, psychological state, diet and gut microbiome. This study aims to explore the effects of these key factors on the functional protein components of breast milk. METHODS With a prospective design, this pilot study included a total of 41 postpartum women. Breast milk and maternal faecal samples collected at 42 days and 3 months postpartum were tested by liquid chromatography-mass spectrometry and 16S RNA sequencing, respectively. Sleep state, psychological state and dietary intake data were also collected from the mothers with validated questionnaires. RESULTS In the early postpartum period, sleep disorders and depression were associated with a decrease in the functional proteins in breast milk. Disordered sleep was significantly negatively correlated with α-lactalbumin (cor = -0.578, p < 0.001), osteopontin (cor = -0.522, p < 0.01) and κ-casein (cor = -0.451, p < 0.01). Depression was negatively correlated with αs1-casein (cor = -0.422, p < 0.01), β-casein (cor = -0.317, p < 0.05) and casein (cor = -0.318, p < 0.05). In 3 months postpartum, most associations were disappeared. But a positive correlation was observed between β-casein (cor = 0.414, p < 0.01), casein (cor = 0.372, p < 0.05), total protein (cor = 0.376, p < 0.05) and depression, while a positive correlation was found between total protein (cor = 0.357, p < 0.05) and disordered sleep at 3 months postpartum. Faecal microbiome data illustrated that changes in the gut microbiome at early postpartum were associated with sleep disorders/depression, but not with the diet. Furthermore, functional pathway analysis revealed metabolic regulation in the amino acid synthesis and metabolic pathways associated with specific microbes was involved in the reduction of breast milk protein. CONCLUSION Sleep disorders/depression could lead to significant changes in breast milk profiles at 42 days postpartum. Maternal gut microbiome might affect breast milk protein composition through regulating amino acid synthesis and metabolic pathways.
Collapse
Affiliation(s)
- Celi Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiaona Na
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Haibing Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yucheng Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yalu Yan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Sufang Duan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Ting Li
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | | | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Jamu IM, Okamoto H. Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR. Front Glob Womens Health 2022; 3:1012463. [PMID: 36619589 PMCID: PMC9812521 DOI: 10.3389/fgwh.2022.1012463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
It has been acknowledged that more women suffer from adverse effects of drugs than men globally. A group of drugs targeting serotonin [5-hydroxytryptamine] (5-HT) binding G-protein-coupled receptors (GPCRs) have been reported to preferentially affect women more than men, causing adverse effects such as breast cancer and infertility. 5-HT GPCR-targeted drugs in the central nervous system (CNS) manage psychiatric conditions, such as depression or bipolar and in the peripheral nervous system (PNS) treat migraines. Physiological characteristics such as specific types of hormones, higher body fat density and smaller body mass in women result in disparities in pharmacodynamics of drugs, thus explaining sex-related differences in the observed adverse effects. In this review, we discuss the side effects of drugs targeting 5-HT GPCRs based on serotonin's roles in the CNS and PNS. We have systematically reviewed adverse effects of drugs targeting 5-HT GPCR using information from the Food and Drug Administration and European Medicines Agency. Further information on drug side effects and receptor targets was acquired from the SIDER and DrugBank databases, respectively. These drugs bind to 5-HT GPCRs in the CNS, namely the brain, and PNS such as breasts, ovaries and testes, potentially causing side effects within these areas. Oestrogen affects both the biosynthesis of 5-HT and the densities of 5-HT GPCRs in given tissues and cells. 5-HT GPCR-targeting drugs perturb this process. This is likely a reason why women are experiencing more adverse effects than men due to their periodic increase and the relatively high concentrations of oestrogen in women and, thus a greater incidence of the oestrogen-mediated 5-HT system interference. In addition, women have a lower concentration of serotonin relative to men and also have a relatively faster rate of serotonin metabolism which might be contributing to the former. We discuss potential approaches that could mitigate at least some of the adverse effects experienced by women taking the 5-HT GPCR-targeting drugs.
Collapse
|
3
|
Chiba T, Kooka A, Kowatari K, Yoshizawa M, Chiba N, Takaguri A, Fukushi Y, Hongo F, Sato H, Wada S. Expression profiles of hsa-miR-148a-3p and hsa-miR-125b-5p in human breast milk and infant formulae. Int Breastfeed J 2022; 17:1. [PMID: 34980190 PMCID: PMC8725387 DOI: 10.1186/s13006-021-00436-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Milk-derived microRNAs (miRNAs), including hsa-miR-148a-3p (miR-148a) and hsa-miR-125b-5p (miR-125b), have been shown to be beneficial to the gastrointestinal function in infants. Here, we investigated their expression during lactation in humans and determined whether the infant formulae available in Japan contain these miRNAs. Methods Healthy Japanese women (n = 16) who gave birth vaginally or by cesarean section at the Teine Keijinkai Hospital between 1 September 2020, and 31 April 2021 were included in this study. Breast milk was collected by nurses on days 4 or 5 after delivery (hereinafter, transition milk) and on day 30 of postpartum (hereinafter, mature milk). The levels of miR-148a and miR-125b in breastmilk and six commercially available infant formulae were compared and evaluated using quantitative reverse transcription-polymerase chain reaction. Results In all participants, the miR-148a level in mature breastmilk was significantly lower than that in the transition milk. The changes in miR-125b expression during lactation showed similar trends to the changes in miR-148a expression. The miR-148a and miR-125b levels in all analyzed infant formulae were lower than 1/500th and 1/100th of those in mature breastmilk, respectively. Conclusions The levels of both miR-148a and miR-125b in human breast milk decreased on day 30 postpartum compared with those in the transition milk. Additionally, the expression of these miRNAs in infant formulae available in Japan was very low. Further studies with larger populations are required to understand precisely the lactational changes in the expression of miR148a and miR-125b in breast milk.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan. .,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan.
| | - Aya Kooka
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Kiyoko Kowatari
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Megumi Yoshizawa
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | | | - Akira Takaguri
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Fuminori Hongo
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| |
Collapse
|
4
|
Chiba T, Maeda T, Fujita Y, Takeda R, Kikuchi A, Kudo K. Stress-Induced Suppression of Milk Protein Is Involved in a Noradrenergic Mechanism in the Mammary Gland. Endocrinology 2019; 160:2074-2084. [PMID: 31150047 DOI: 10.1210/en.2019-00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023]
Abstract
Stress decreases milk components such as milk protein and milk yield. The objective of this study was to investigate whether noradrenaline (NA) in milk constituted a factor associated with stress-induced changes in milk proteins such as β-casein. Breast milk obtained from eight healthy, nursing women contained NA at concentrations ranging from 12.7 to 115.5 nM. The expression of tyrosine hydroxylase (TH), a rate-limiting enzyme of NA synthesis, was observed in primary normal human mammary epithelial cells (HMECs), and in MCF-12A and MCF-10A cell lines. The mean NA concentration in culture medium used by MCF-12A transfected with TH small interfering RNA (siRNA) was significantly lower than that of cells transfected with control siRNA. NA concentration in milk in restraint-stressed nursing mice was significantly higher than that in nonstressed nursing mice, owing to elevated TH expression in the mammary epithelium. The mean β-casein concentration in milk in restraint-stressed mice was significantly lower than that in nonstressed mice. NA treatment resulted in a concentration-dependent decrease in β-casein expression in HMECs. β2 adrenergic receptor (ADRB2) expression was observed in HMECs, MCF-12A, and MCF-10A, and immunohistochemical analysis of ADRB2 using mammary epithelium sections obtained from mice at day 10 of lactation showed that ADRB2 was expressed at the apical membrane of mammary epithelium. Treatment with salbutamol, an ADRB2 stimulant, decreased β-casein expression in a concentration-dependent manner in MCF-12A. Our results showed that endogenous NA derived from mammary epithelial cells likely comprises one of the factors involved in stress-induced changes in milk proteins such as β-casein.
Collapse
Affiliation(s)
- Takeshi Chiba
- Department of Clinical Pharmacy, Division of Clinical Pharmaceutics and Pharmacy Practice, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Tomoji Maeda
- Department of Pharmacology, Nihon Pharmaceutical University, Komuro, Ina-machi, Kitaadachi-gun, Saitama, Japan
| | - Yu Fujita
- Department of Biological Pharmacy, Division of Neuroscience, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Rika Takeda
- Department of Nursing, Iwate Medical University Hospital, Iwate, Japan
| | - Akihiko Kikuchi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kenzo Kudo
- Department of Clinical Pharmacy, Division of Clinical Pharmaceutics and Pharmacy Practice, School of Pharmacy, Iwate Medical University, Iwate, Japan
| |
Collapse
|
5
|
Chiba T, Maeda T, Kudo K. [Endogenous Serotonin and Milk Production Regulation in the Mammary Gland]. YAKUGAKU ZASSHI 2018; 138:829-836. [PMID: 29863055 DOI: 10.1248/yakushi.18-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsic serotonin (5-hydroxytryptamine; 5-HT) synthesized within the mammary epithelium has an important physiological role in milk volume homeostasis in many species including mice, cows, and humans. During lactation, mammary epithelial cells activate 5-HT synthesis by tryptophan hydroxylase 1 (TPH1). TPH1 catalyzes the rate-limiting step in 5-HT biosynthesis within mammary glands. 5-HT synthesized in mammary glands is released into both the apical (milk) and basolateral spaces by a vesicular monoamine transporter. 5-HT released into milk is incorporated by the apical membrane-expressed serotonin reuptake transporter and degraded by the monoamine oxidase A enzyme. Suckling maintains 5-HT at low levels in milk. When the mammary gland becomes filled with milk, 5-HT provides a negative feedback signal that suppresses further milk synthesis in the mammary epithelium. Our research, using human mammary epithelial MCF-12A cells, shows that the expression of β-casein, a differentiation marker, is suppressed via 5-HT-mediated inhibition of signal transducer and activator of transcription 5. Additionally, our results show that reduced β-casein expression in MCF-12A cells is associated with 5-HT7 receptor expression. Furthermore, we show that 5-HT7 receptor-mediated suppression of β-casein expression is involved in the activation of protein kinase A and protein-tyrosine phosphatase 1B. Thus, this mechanism might be associated with the feedback signals by 5-HT within the mammary epithelium. Hence, further research that builds on our findings should include the elucidation of the physiological roles of 5-HT present in milk synthesized by mammary epithelial cells in vivo and its effects on nursing infants.
Collapse
Affiliation(s)
- Takeshi Chiba
- Department of Pharmaceutics and Clinical Practice, School of Pharmacy, Iwate Medical University.,Department of Pharmacy, Iwate Medical University Hospital
| | - Tomoji Maeda
- Department of Pharmacotherapy, Nihon Pharmaceutical University
| | - Kenzo Kudo
- Department of Pharmaceutics and Clinical Practice, School of Pharmacy, Iwate Medical University.,Department of Pharmacy, Iwate Medical University Hospital
| |
Collapse
|
6
|
Analysis of serotonin concentrations in human milk by high-performance liquid chromatography with fluorescence detection. Biochem Biophys Res Commun 2017; 485:102-106. [PMID: 28189675 DOI: 10.1016/j.bbrc.2017.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in milk volume homeostasis in the mammary gland during lactation; 5-HT in milk may also affect infant development. However, there are few reports on 5-HT concentrations in human breast milk. To address this issue, we developed a simple method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for measuring 5-HT concentrations in human breast milk. Breast milk samples were provided by four healthy Japanese women. Calibration curves for 5-HT in each sample were prepared with the standard addition method between 5 and 1000 ng/ml, and all had correlation coefficients >0.999. The recovery of 5-HT was 96.1%-101.0%, with a coefficient of variation of 3.39%-8.62%. The range of 5-HT concentrations estimated from the calibration curves was 11.1-51.1 ng/ml. Thus, the HPLC-FD method described here can effectively extract 5-HT from human breast milk with high reproducibility.
Collapse
|
7
|
Chiba T, Maeda T, Sanbe A, Kudo K. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells. Biochem Biophys Res Commun 2016; 473:323-328. [DOI: 10.1016/j.bbrc.2016.03.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
|