1
|
Li S, Li Y, Zhang Y, Li S, Zhang M, Jin F, Wei Z, Yang Y, Gao X, Mao N, Ge X, Xu H, Yang F. N-Acetyl-Seryl-Asparyl-Lysyl-Proline regulates lung renin angiotensin system to inhibit epithelial-mesenchymal transition in silicotic mice. Toxicol Appl Pharmacol 2020; 408:115255. [PMID: 33007385 DOI: 10.1016/j.taap.2020.115255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Silicosis is a major public health concern with various contributing factors. The renin-angiotensin system (RAS)is a critical regulator in the pathogenesis of this disease. We focused on two key RAS enzymes, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2), to elucidate the activation of the ACE-angiotensin II (Ang II)-angiotensin II receptor 1 (AT1) axis and the inhibition of the ACE2-angiotensin-(1-7) [Ang-(1-7)]-Mas receptor axis in C57BL/6mice following SiO2 treatment. Silica exposure caused nodule formation, pulmonary interstitial fibrosis, epithelial-mesenchymal transition (EMT), abnormal deposition of extracellular matrix, and impaired lung function in mice. These effects were attenuated by the inhibition of ACE (captopril), blockade of the AT1(losartan), or systemic knockdown of the Ace gene. These effects were exacerbated by the inhibition of ACE2 (MLN-4760), blockade of the Mas (A779), or knockdown of the Ace2 gene. N-Acetyl-Seryl-Asparyl-Lysyl-Proline (Ac-SDKP), an anti-fibrotic peptide, ameliorated the silica-exposure-induced pathological changes by targeting the RAS system by activating the protective ACE2-Ang-(1-7)-Mas axis and inhibiting the deleterious ACE-Ang II-AT1 axis, thereby exerting a protective effect. This was confirmed in mouse lung type II epithelial cells (MLE-12) pretreated with Ang II and/or gene silencing separately targeting Ace and Ace2.The effects of Ac-SDKP were similar to those produced by Ace gene silencing and were partly attenuated by Ace2 deficiency. These findings suggested that RAS plays critical roles in the pathomechanism of silicosis fibrosis and that Ac-SDKP regulates lung RAS to inhibit EMT in silicotic mice and MLE-12 cells.
Collapse
Affiliation(s)
- Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yaqian Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yi Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shifeng Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Min Zhang
- Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Fuyu Jin
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhongqiu Wei
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yi Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xuemin Gao
- Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xingchen Ge
- Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China; Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| |
Collapse
|
2
|
Escobales N, Nuñez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1426-H1438. [PMID: 30978131 PMCID: PMC6620675 DOI: 10.1152/ajpheart.00772.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.
Collapse
Affiliation(s)
- Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| |
Collapse
|