1
|
Li Y, Li N, Yao S, Hu H, Wan B, Wu Z, Cheng H, Li D, Liu D, Xu E. Dual effects of exogenous ferulic acid bound in rice starch as 3D printable food ink: Structural fluidity and antimicrobial activity. Int J Biol Macromol 2025; 300:140262. [PMID: 39855496 DOI: 10.1016/j.ijbiomac.2025.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA. Compared with pure starch and starch-FA mixture gel, the starch-FA composite gel possessed lower viscosity, with a dramatically reduced extrusion pressure in the 3D printing test. Furthermore, antimicrobial activity tests indicated that the starch-FA composite gel can inhibit the growth of microorganism for achieving a long storage period. Overall, we provide a biomaterial of starch-FA composite that can serve as both a 3D printing food ink and an edible, printable, active, and lightweight packaging ink.
Collapse
Affiliation(s)
- Yushi Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Na Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haohao Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Beijia Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
2
|
Yang Y, Jia Z, Ma T, Yu Q, Tang L, Li Y, Fan L. Design and Synthesis of Butylphthalide-Hydroxycinnamic Acid Hybrid Derivatives as Potential Antiplatelet Agents. Chem Biodivers 2025; 22:e202402022. [PMID: 39578954 DOI: 10.1002/cbdv.202402022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Thirty-eight novel butylphthalide-hydroxycinnamic acid hybrid derivatives were designed and synthesized to discover effective antiplatelet agglutination drugs. Among these compounds, 3 o gave the optimal inhibitory activity against AA-induced platelet aggregation in vitro and also exhibited better inhibition than the precursor 3-n-butylphthalide (NBP) against thrombin-induced platelet contraction, carrageenan-induced tail thrombosis, and FeCl3-induced common carotid artery thrombosis. Further investigations on the anti-ischemic stroke activity revealed that compound 3 o exhibited a remarkable protective effect against ischemic/reperfusion brain injury. The PAMPA-BBB permeability and liver microsomal stability tests indicated that compound 3 o could traverse the blood-brain barrier and possessed favorable metabolic stability. This research provides a new candidate compound for treating and preventing cerebrovascular diseases caused by thrombosis.
Collapse
Affiliation(s)
- Ya Yang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zhen Jia
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Taigui Ma
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Qinyang Yu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Lei Tang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yong Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Lingling Fan
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| |
Collapse
|
3
|
Liu YY, Xu YF, Li XR, Fan QP, Liu JH, Zhou SY, Qian YQ, Li MD. Design, synthesis, and inhibition of novel ferulic acid derivatives on free fatty acid induced cellular lipid accumulation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-16. [PMID: 39987552 DOI: 10.1080/10286020.2025.2459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Abnormal accumulation of hepatocyte lipids is a hallmark feature of NAFLD. Ferulic acid (FA), an ingredient with antioxidant activity in Chinese herbs, can be used to treat NAFLD by activating AMPK phosphorylation. In this study, we synthesized ten acrylic acid derivatives A1-A10. The inhibition of lipid accumulation showed that most target compounds could inhibit lipid accumulation at 400 μM; compound A3 showed a better inhibitory effect than other compounds. Molecular docking results proved that A3 could bind to PPARγ, and multiple binding sites existed in both the ferulic acid cohort and the substituted benzene cohort.
Collapse
Affiliation(s)
- Ying-Ying Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi-Fan Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xin-Ru Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qi-Pan Fan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jia-Hao Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Si-Yu Zhou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yu-Qing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ming-Dong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
4
|
Kakarla R, Vinjavarapu LA, Krishnamurthy S. Diet and Nutraceuticals for treatment and prevention of primary and secondary stroke: Emphasis on nutritional antiplatelet and antithrombotic agents. Neurochem Int 2024; 179:105823. [PMID: 39084351 DOI: 10.1016/j.neuint.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is a devastating disease that causes morbidity and mortality. Malnutrition following ischemic stroke is common in stroke patients. During the rehabilitation, the death rates of stroke patients are significantly increased due to malnutrition. Nutritional supplements such as protein, vitamins, fish, fish oils, moderate wine or alcohol consumption, nuts, minerals, herbal products, food colorants, marine products, fiber, probiotics and Mediterranean diets have improved neurological functions in stroke patients as well as their quality of life. Platelets and their mediators contribute to the development of clots leading to stroke. Ischemic stroke patients are treated with thrombolytics, antiplatelets, and antithrombotic agents. Several systematic reviews, meta-analyses, and clinical trials recommended that consumption of these nutrients and diets mitigated the vascular, peripheral, and central complications associated with ischemic stroke (Fig. 2). Particularly, these nutraceuticals mitigated the platelet adhesion, activation, and aggregation that intended to reduce the risks of primary and secondary stroke. Although these nutraceuticals mitigate platelet dysfunction, there is a greater risk of bleeding if consumed excessively. Moreover, malnutrition must be evaluated and adequate amounts of nutrients must be provided to stroke patients during intensive care units and rehabilitation periods. In this review, we have summarized the importance of diet and nutraceuticals in ameliorating neurological complications and platelet dysfunction with an emphasis on primary and secondary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, India
| | | | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
5
|
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024; 13:1471. [PMID: 39273041 PMCID: PMC11394358 DOI: 10.3390/cells13171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, β-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| |
Collapse
|
6
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
7
|
Aguayo-Morales H, Poblano J, Berlanga L, Castillo-Tobías I, Silva-Belmares SY, Cobos-Puc LE. Plant Antioxidants: Therapeutic Potential in Cardiovascular Diseases. COMPOUNDS 2024; 4:479-502. [DOI: 10.3390/compounds4030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cardiovascular diseases (CVDs) are a global health problem. The mortality associated with them is one of the highest. Essentially, CVDs occur when the heart or blood vessels are damaged. Oxidative stress is an imbalance between the production of reactive oxygen species (free radicals) and antioxidant defenses. Increased production of reactive oxygen species can cause cardiac and vascular injuries, leading to CVDs. Antioxidant therapy has been shown to have beneficial effects on CVDs. Plants are a rich source of bioactive antioxidants on our planet. Several classes of these compounds have been identified. Among them, carotenoids and phenolic compounds are the most potent antioxidants. This review summarizes the role of some carotenoids (a/β-carotene, lycopene and lutein), polyphenols such as phenolic acids (caffeic, p-coumaric, ferulic and chlorogenic acids), flavonoids (quercetin, kaempferol and epigallocatechin gallate), and hydroxytyrosol in mitigating CVDs by studying their biological antioxidant mechanisms. Through detailed analysis, we aim to provide a deeper understanding of how these natural compounds can be integrated into cardiovascular health strategies to help reduce the overall burden of CVD.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Joan Poblano
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Lia Berlanga
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Ileana Castillo-Tobías
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Sonia Yesenia Silva-Belmares
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
8
|
Zhang XM, Min XR, Li D, Li B, Rui YX, Xie HX, Liu R, Zeng N. The protective effect and mechanism of piperazine ferulate in rats with 5/6 nephrectomy-caused chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5715-5729. [PMID: 38305866 DOI: 10.1007/s00210-024-02976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Chronic kidney disease (CKD) is a type of chronic disease in which multiple factors are responsible for the structural and functional disorders of the kidney. Piperazine ferulate (PF) has anti-platelet and anti-fibrotic effects, and its mechanism of action remains to be elucidated. This study aimed to investigate the protective effect of PF against CKD in rats and to determine its mechanism of action. Network pharmacology was used to predict potential PF action targets in the treatment of CKD and to further validate them. A rat model of CKD was established; blood was collected, etc., for the assessment of the renal function; renal pathologic damage was examined using hematoxylin and eosin (HE) staining and Masson staining; changes in the levels of TGF-β1 and α-SMA were determined with ELISA; EPOR, FN, and COL I expression were detected utilizing immunohistochemistry; and HIF-1α, HIF-2α, and EPO protein molecules were analyzed deploying western blotting. PF reduces Scr, BUN, and 24 h UP levels; decreases FN and COL I expression; and attenuates renal injury. Additionally, PF inhibited TGF-β1 and stimulated the production of HIF-1α and HIF-2α, which downregulated α-SMA and upregulated EPO. PF attenuated the progression of the CKD pathology, and the mechanism of its action is possibly associated with the promotion of HIF-1α/HIF-2α/EPO production and TGF-β1 reduction.
Collapse
Affiliation(s)
- Xiu-Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xin-Ran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Li
- Chengdu Hanpharm Pharmaceutical Co., Ltd., Pengzhou, 611930, Sichuan, China
| | - Yi-Xin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hong-Xiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
9
|
Huang J, Liang X, Zhao M, Zhang Y, Chen Z. Metabolomics and network pharmacology reveal the mechanism of antithrombotic effect of Asperosaponin VI. Biomed Pharmacother 2024; 173:116355. [PMID: 38493592 DOI: 10.1016/j.biopha.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Dipsaci Radix may possess antithrombotic properties, and one of its primary active ingredients is Asperosaponin VI. However, the antithrombotic effects and pharmacological mechanisms of Asperosaponin VI remain unclear. An in vivo experimental study has demonstrated the antithrombotic activity of Asperosaponin VI. Asperosaponin VI also exhibits anticoagulant properties. Asperosaponin VI significantly hindered collagen adrenergic-induced acute pulmonary thrombosis in mice and enhanced their survival rate. This hinders the formation of acute pulmonary embolisms induced by adenosine diphosphate (ADP) and decreases recovery time. A comprehensive strategy that combines metabolomics, network pharmacology, molecular docking, and experimental validation has the potential to reveal the antithrombotic mechanisms of Asperosaponin VI. Metabolomic evidence suggests that Asperosaponin VI may influence platelet aggregation and the production of anti-inflammatory metabolites through the regulation of pathways such as phenylalanine and arachidonic acid metabolism, thereby inhibiting thrombosis. Network pharmacology identified the pharmacological targets of Asperosaponin VI and indicated that it treats thrombi by partially regulating the signaling pathways related to inflammation and platelet aggregation. Asperosaponin VI showed strong binding affinity for F2, PTPRC, JUN, STAT3, SRC, AKT1. The antiplatelet aggregation activity of Asperosaponin VI was validated based on the metabolomic and network pharmacology results. Asperosaponin VI inhibits platelet aggregation induced by ADP, AA, and collagen. Therefore, Asperosaponin VI exerts antithrombotic effects through antiplatelet aggregation. Therefore, Asperosaponin VI is a promising antithrombotic agent.
Collapse
Affiliation(s)
- Jin Huang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Xuewen Liang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Minrui Zhao
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Yue Zhang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China.
| | - Ziyang Chen
- Huizhou first Maternal and Child Health Care Hospital, Huizhou 516000, China.
| |
Collapse
|
10
|
Nguyen TVA, Nguyen TMH, Le HL, Bui DH. Potential antithrombotic effect of two new phenylpropanoid sucrose esters and other secondary metabolites of Canna indica L. rhizome. Nat Prod Res 2024; 38:897-905. [PMID: 37749889 DOI: 10.1080/14786419.2023.2262712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Canna indica L. has been traditionally used to treat various diseases. Based on previously reported antithrombotic effect for this plant, two new phenylpropanoid sucrose esters (canindicoside A (1) and canindicoside B (2)) and seven known compounds: nepetoidin B (3), caffeic acid (4), ferulic acid (5), (R)-(+)-rosmarinic acid (6), isorinic acid (7), (S)-(-)-rosmarinic acid (8) and (S)-(-)-rosmarinic acid methyl ester (9) were isolated from the ethyl acetate extract. Compounds were elucidated by NMR and MS spectroscopic methods. The antiplatelet effect was evaluated using turbidimetric method. Anticoagulant activity was examined by measuring activated partial thromboplastine time (APTT), prothrombin time, and thrombine time (TT). It was shown for the first time that both new phenylpropanoid sucrose esters 1 and 2, 7 and 9 displayed dose-dependent antiplatelet effects. 2 and 9 had the highest inhibitory activity on both adenosine diphosphate (ADP)- and collagen-induced platelet aggregation. Moreover, 1, 7 and 9 also exhibited anticoagulant activity. At 0.4 mg/mL, both 1 and 7 prolonged APTT compared to the negative control (p < 0.05), suggesting the possible inhibitory impact on the intrinsic coagulation pathway. Moreover, 9 at 0.4 mg/mL exerted higher TT values than the negative control (p < 0.05). C. indica and its bioactive phytochemicals are potential candidates for development of anti-thrombosis therapy.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Minh Hang Nguyen
- Center of Drug Research and Development, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hong Luyen Le
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Duc Huy Bui
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
11
|
Zhao Y, Yang C, Liu Y, Qin M, Sun J, Liu G. Effects of sodium ferulate for injection on anticoagulation of warfarin in rats in vivo. BMC Complement Med Ther 2024; 24:87. [PMID: 38355450 PMCID: PMC10865636 DOI: 10.1186/s12906-024-04389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Herb-drug interactions may result in increased adverse drug reactions or diminished drug efficacy, especially for drugs with a narrow therapeutic index such as warfarin. The current study investigates the effects of sodium ferulate for injection (SFI) on anticoagulation of warfarin from aspects of pharmacodynamics and pharmacokinetics in rats and predicts the risk of the combination use. METHODS Rats were randomly divided into different groups and administered single- or multiple-dose of warfarin (0.2 mg/kg) with or without SFI of low dose (8.93 mg/kg) or high dose (26.79 mg/kg). Prothrombin time (PT) and activated partial thromboplastin time (APTT) were detected by a blood coagulation analyzer, and international normalized ratio (INR) values were calculated. UPLC-MS/MS was conducted to measure concentrations of warfarin enantiomers and pharmacokinetic parameters were calculated by DAS2.0 software. RESULTS The single-dose study demonstrated that SFI alone had no effect on coagulation indices, but significantly decreased PT and INR values of warfarin when the two drugs were co-administered (P < 0.05 or P < 0.01), while APTT values unaffected (P > 0.05). Cmax and AUC of R/S-warfarin decreased but CL increased significantly in presence of SFI (P < 0.01). The multiple-dose study showed that PT, APTT, INR, and concentrations of R/S-warfarin decreased significantly when SFI was co-administered with warfarin (P < 0.01). Warfarin plasma protein binding rate was not significantly changed by SFI (P > 0.05). CONCLUSIONS The present study implied that SFI could accelerate warfarin metabolism and weaken its anticoagulation intensity in rats.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Chunjuan Yang
- College of Pharmacy, Harbin Medical University, Harbin, 150086, P.R. China
| | - Yan Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Mengnan Qin
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Jiahui Sun
- College of Pharmacy, Harbin Medical University, Harbin, 150086, P.R. China
| | - Gaofeng Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China.
| |
Collapse
|
12
|
Sun YL, Yao YL, Jia MJ, Sun YY, Li HL, Ruan XF, Wang XL. Evaluation of the efficacy and safety of Suxiao Jiuxin Pill in the treatment of stable angina: A randomized, double-blind, placebo-controlled, multi-center clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116959. [PMID: 37487965 DOI: 10.1016/j.jep.2023.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin Pill (SJP) has been used for treating chronic stable angina (SA) for more than 40 years in China. SJP is composed of two Chinese herbs and has the effect of activating blood and promoting qi, according to traditional Chinese medicine (TCM) theory. AIM OF THE STUDY The study aims to determine the effects of adjunct SJP on conventional therapy in patients with SA which provides a complementary choice and its evidence for clinical medication for treating SA. MATERIALS AND METHODS Participants with SA were recruited and randomized 1:1 to either the SJP group or the control group for 24 weeks. Both groups received conventional treatment according to local tertiary hospital protocols, and the participants received additional SJP (composed of Ligusticum wallichii and Borneol) or placebo in treatment and control groups respectively. The primary outcome was the curative efficacy rate at week 4. Secondary outcomes are the curative efficacy rate, the total score of angina pectoris symptoms, CCS Angina Classification improvement, Seattle Angina Questionnaire (SAQ) score, TCM syndrome scores (TCMSS), and the curative efficacy rate of TCMSS. Adverse events and adverse drug reactions were observed and recorded for safety analysis. RESULTS A total of 324 participants with SA from 13 hospitals in China were enrolled in this trial. Compared with the control group, the curative efficacy rate of SA, the curative efficacy rate of TCMSS significantly increased, and the total score of angina pectoris symptoms and TCMSS significantly reduced in the SJP group at week 4, 12, and 24, accompanied by the statistically significant improvement in the curative efficacy rate based on CCS grade reduction (all P < 0.05). Furthermore, the SAQ score (physical limitation, angina stability, and treatment satisfaction) was evaluated as the quality of life significantly improved after treatment (P < 0.05). The medication compliance, concomitant medication, and rates of adverse events were similar between the two groups (P > 0.05). CONCLUSION The present prospective, multicenter, randomized, double-blind, placebo-controlled, clinical trial confirms that adjunct SJP to conventional treatment increased the curative efficacy and life quality of SA patients with no significant adverse drug reactions during the clinical application. CLINICAL TRIAL REGISTRATION (ID, ChiCTR1900021876, URL = http://www.chictr.org.cn/showproj.aspx?proj=34955).
Collapse
Affiliation(s)
- Yuan-Long Sun
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Li Yao
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mei-Jun Jia
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan-Yuan Sun
- Cardiovascular Disease Drug Research Committee, China Association of Traditional Chinese Medicine, China
| | - He-Lin Li
- Beijing Yaohai Ningkang Pharmaceutical Technology Co., LTD, China
| | - Xiao-Fen Ruan
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Long Wang
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Wang J, Luo C, Luo M, Zhou S, Kuang G. Targets and Mechanisms of Xuebijing in the Treatment of Acute Kidney Injury Associated with Sepsis: A Network Pharmacology-based Study. Curr Comput Aided Drug Des 2024; 20:752-763. [PMID: 37211841 DOI: 10.2174/1573409919666230519121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/05/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Sepsis is a state of the systemic inflammatory response of the host induced by infection, frequently affecting numerous organs and producing varied degrees of damage. The most typical consequence of sepsis is sepsis-associated acute kidney injury(SA-AKI). Xuebijing is developed based on XueFuZhuYu Decoction. Five Chinese herbal extracts, including Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix, make up the majority of the mixture. It has properties that are anti-inflammatory and anti-oxidative stress. Xuebijing is an effective medication for the treatment of SA-AKI, according to clinical research. But its pharmacological mechanism is still not completely understood. METHODS First, the composition and target information of Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix were collected from the TCMSP database, while the therapeutic targets of SA-AKI were exported from the gene card database. To do a GO and KEGG enrichment analysis, we first screened the key targets using a Venn diagram and Cytoscape 3.9.1. To assess the binding activity between the active component and the target, we lastly used molecular docking. RESULTS For Xuebijing, a total of 59 active components and 267 corresponding targets were discovered, while for SA-AKI, a total of 1,276 targets were connected. There were 117 targets in all that was shared by goals for active ingredients and objectives for diseases. The TNF signaling pathway and the AGE-RAGE pathway were later found to be significant pathways for the therapeutic effects of Xuebijing by GO analysis and KEGG pathway analysis. Quercetin, luteolin, and kaempferol were shown to target and modulate CXCL8, CASP3, and TNF, respectively, according to molecular docking results. CONCLUSION This study predicts the mechanism of action of the active ingredients of Xuebijing in the treatment of SA-AKI, which provides a basis for future applications of Xuebijing and studies targeting the mechanism.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chengyu Luo
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengling Luo
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Siwen Zhou
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guicheng Kuang
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
15
|
Shen Z, Wu Y, Zhou L, Wang Q, Tang Y, Sun Y, Zheng F, Li Y. The efficacy of sodium ferulate combination therapy in coronary heart disease: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154829. [PMID: 37116387 DOI: 10.1016/j.phymed.2023.154829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sodium ferulate (SF), a derivative of ferulic acid, is one of the active constituents in medicinal plants thought to be useful in fighting cardiovascular diseases. However, there still lacks a systematic review of the efficacy and safety of SF in treating coronary heart disease (CHD). It is therefore the purpose of this study to comprehensively review all clinical randomized controlled trials (RCTs) of SF in CHD to assess its efficacy and safety. METHODS All analysis is based on 8 databases as of February 2023, which includes 35 outcomes of RCTs that investigate the effect of SF combination therapy in CHD. The present study evaluates the quality and bias of selected literature by the Jadad scale and Cochrane Collaboration's tools, and also the quality of evidence by GRADE Profiler. Furthermore, it applies sensitivity analysis to assess the high heterogeneity impact of outcomes and conducted subgroup analysis to estimate the influence factors in these studies. The study protocol was set documented, and published beforehand in PROSPERO (Registration No.CRD42022348841). RESULTS The meta-analysis of 36 studies (with 3207 patients) shows that SF combined with conventional drugs has improved clinical effectiveness for patients with CHD [RR: 1.21 (95% CI 1.17,1.26); p < 0.00001]. Statistically significant results of meta-analyses are also seen in electrocardiography (ECG) efficacy, frequency of angina attacks, endothelium-dependent flow-mediated vasodilation (FMD), nitric oxide (NO), endothelin (ET), whole Blood low shear rate (LS), platelet aggregation test (PAgT), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL6), triglyceride (TG). Adverse events are reported in 6 RCTs. By GRADE approaches, 2 outcomes (clinical efficacy, CRP) indicate a moderate quality of evidence, 17 outcomes indicate low quality of evidence, with the other 16 very low-quality. CONCLUSION SF combination therapy has a better curative effect than conventional therapy. However, due to items with low-quality evidence demonstrated in the study, the presence of clinical heterogeneity, and imprecision in partial outcome measures, all these led to limitations in the evidence of this study. Thus, the conclusion needs to be further verified by more in-depth research.
Collapse
Affiliation(s)
- Zinuo Shen
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Wu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Hubei, China
| | - Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Henan, China
| | - Qian Wang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Yuhang Li
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|
16
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
17
|
Jin C, Chen D, Zhu T, Chen S, Du J, Zhang H, Dong W. Poly(ferulic acid)-hybrid nanofibers for reducing thrombosis and restraining intimal hyperplasia in vascular tissue engineering. BIOMATERIALS ADVANCES 2023; 146:213278. [PMID: 36638698 DOI: 10.1016/j.bioadv.2023.213278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Small-diameter blood vascular transplantation failure is mainly caused by the vascular materials' unreliable hemocompatibility and histocompatibility and the unmatched mechanical properties, which will cause unstable blood flow. How to solve the problems of coagulation and intimal hyperplasia caused by the above factors is formidable in vascular replacement. In this work, we have synthesized poly(ferulic acid) (PFA) and prepared poly(ester-urethane)urea (PEUU)/silk fibroin (SF)/poly(ferulic acid) (PFA) hybrid nanofibers vascular graft (PSPG) by random electrospinning and post-double network bond crosslinking for process optimization. The results in vitro demonstrated that the graft is of significant anti-oxidation, matched mechanical properties, reliable cytocompatibility, and blood compatibility. Replacing resected rat abdominal aorta and rabbit carotid artery models with PSPG vascular grafts indicated that the grafts are capable of homogeneous hybrid PFA significantly promoted the stabilization of endothelial cells and the ingrowth of smooth muscle cells, meanwhile stabilizing the immune microenvironment. This research demonstrates the PSPG vascular graft with substantial patency, indicating their potential for injured vascular healing.
Collapse
Affiliation(s)
- Changjie Jin
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Dian Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China; Shanghai PINE&POWER Biotech Co., Ltd, 500 Huaxi Rd., Shanghai 201108, PR China.
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China.
| | - Wei Dong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China.
| |
Collapse
|
18
|
Zhou Y, Zhang D, Tan P, Xian B, Jiang H, Wu Q, Huang X, Zhang P, Xiao X, Pei J. Mechanism of platelet activation and potential therapeutic effects of natural drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154463. [PMID: 36347177 DOI: 10.1016/j.phymed.2022.154463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cardiovascular disease is one of the most concerning chronic diseases in the world. Many studies have shown that platelet overactivation is a very important factor in the occurrence and development of cardiovascular diseases. At present, the widely used antiplatelet drugs have some defects, such as drug resistance and adverse reactions. PURPOSE The purpose of this article is to summarize the main mechanisms and pathways of platelet activation, the main targets of antiplatelet aggregation, and the antiplatelet aggregation components of natural drugs and their mechanisms of action to provide new research ideas for the development and application of antiplatelet drugs. STUDY DESIGN AND METHODS In this review, we systematically searched the PubMed, Google Scholar, Web of Science, and CNKI databases and selected studies based on predefined eligibility criteria. We then assessed their quality and extracted data. RESULTS ADP, AA, THR, AF, collagen, SDF-1α, and Ca2+ can induce platelet aggregation and trigger thrombosis. Natural drugs have a good inhibitory effect on platelet activation. More than 50 kinds of natural drugs and over 120 kinds of chemical compounds, including flavonoids, alkaloids, saponins, terpenoids, coumarins, and organic acids, have significantly inhibited platelet activation activity. The MAPK pathway, cGMP-PKG pathway, cAMP-PKA pathway, PI3K-AKT pathway, PTK pathway, PLC pathway, and AA pathway are the main mechanisms and pathways of platelet activation. CONCLUSION Natural drugs and their active ingredients have shown good activity and application prospects in anti-platelet aggregation. We hope that this review provides new research ideas for the development and application of antiplatelet drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xulong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhang
- Medical Supplies Centre of PLA General Hospital, Beijing 100036, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, Beijing 10039, China.
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
20
|
Guo W, Li Y, An D, Zhou M, Xiong J, Jiang Z, Ding Y, Huang R, Miao W. Sodium ferulate-functionalized silver nanopyramides with synergistic antithrombotic activity for thromboprophylaxis. Colloids Surf B Biointerfaces 2022; 220:112925. [DOI: 10.1016/j.colsurfb.2022.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
21
|
A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia chilensis Stuntz (Maqui). Molecules 2022; 27:molecules27196147. [PMID: 36234679 PMCID: PMC9571323 DOI: 10.3390/molecules27196147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Some fruits and vegetables, rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, may inhibit platelet activation pathways and therefore reduce the risk of suffering from CVD when consumed regularly. Aristotelia chilensis Stuntz (Maqui) is a shrub or tree native to Chile with outstanding antioxidant activity, associated with its high content in anthocyanins, polyphenols, and flavonoids. Previous studies reveal different pharmacological properties for this berry, but its cardioprotective potential has been little studied. Despite having an abundant composition, and being rich in bioactive products with an antiplatelet role, there are few studies linking this berry with antiplatelet activity. This review summarizes and discusses relevant information on the cardioprotective potential of Maqui, based on its composition of bioactive compounds, mainly as a nutraceutical antiplatelet agent. Articles published between 2000 and 2022 in the following bibliographic databases were selected: PubMed, ScienceDirect, and Google Scholar. Our search revealed that Maqui is a promising cardiovascular target since extracts from this berry have direct effects on the reduction in cardiovascular risk factors (glucose index, obesity, diabetes, among others). Although studies on antiplatelet activity in this fruit are recent, its rich chemical composition clearly shows that the presence of chemical compounds (anthocyanins, flavonoids, phenolic acids, among others) with high antiplatelet potential can provide this berry with antiplatelet properties. These bioactive compounds have antiplatelet effects with multiple targets in the platelet, particularly, they have been related to the inhibition of thromboxane, thrombin, ADP, and GPVI receptors, or through the pathways by which these receptors stimulate platelet aggregation. Detailed studies are needed to clarify this gap in the literature, as well as to specifically evaluate the mechanism of action of Maqui extracts, due to the presence of phenolic compounds.
Collapse
|
22
|
Kubatka P, Mazurakova A, Koklesova L, Samec M, Sokol J, Samuel SM, Kudela E, Biringer K, Bugos O, Pec M, Link B, Adamkov M, Smejkal K, Büsselberg D, Golubnitschaja O. Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J 2022; 13:407-431. [PMID: 35990779 PMCID: PMC9376584 DOI: 10.1007/s13167-022-00293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Sokol
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
23
|
Gul H, Jamshed A, Jabeen Q. Pharmacological Investigation of Asphodelus tenuifolius Cav . for its Potential Against Thrombosis in Experimental Models. Dose Response 2022; 20:15593258221127566. [PMID: 36132706 PMCID: PMC9483973 DOI: 10.1177/15593258221127566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Thrombosis is a major disorder which is an outcome of an imbalance in the hemostatic system that develop undesirable blood clot and hinder blood circulation. Purpose The current study was designed to verify the potential of aqueous methanolic crude extract of Asphodelus tenuifolius Cav. (At.Cr), used traditionally as remedy in circulatory problems. Research Design Antioxidant activity, FTIR, and HPLC analysis were performed. In-vitro clot lysis assay was performed on human blood samples, and in-vivo acute pulmonary thromboembolism model was developed by administering the mixture of collagen and epinephrine in tail vein of mice. Carrageenan-induced thrombosis and FeCl3-induced carotid arterial thrombosis models were developed in rats. Results At.Cr demonstrated significant increase in lysis of human blood clot. Bleeding and clotting times were increased dose-dependently. Lungs histology showed clear alveolar spaces with decreased red blood cells congestion. Reduction in infarcted tail length, augmentation in prothrombin time, and activated partial thromboplastin time with decrease in platelet count were observed. At.Cr also prolonged the arterial occlusion time and reduced the weight of thrombus and TXB2 levels dose-dependently. Conclusions The results demonstrated the antithrombotic and thrombolytic potential of At.Cr due to activation of coagulation factors through extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Humaira Gul
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur-Pakistan.,Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| | - Ayesha Jamshed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur-Pakistan
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur-Pakistan
| |
Collapse
|
24
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
25
|
Rodríguez L, Plaza A, Méndez D, Carrasco B, Tellería F, Palomo I, Fuentes E. Antioxidant Capacity and Antiplatelet Activity of Aqueous Extracts of Common Bean (Phaseolus vulgaris L.) Obtained with Microwave and Ultrasound Assisted Extraction. PLANTS 2022; 11:plants11091179. [PMID: 35567181 PMCID: PMC9102907 DOI: 10.3390/plants11091179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Phaseolus vulgaris L. has beneficial effects on several chronic non-communicable diseases (e.g., cardiovascular diseases) related to oxidative stress. This redox state may influence platelet activation and aggregation; which is crucial in thrombus formation. In this work, the antiplatelet and antioxidant potential of aqueous extracts obtained by green processes, microwave-assisted extraction and ultrasound-assisted extraction, from 25 landraces of common beans were investigated. Phenol content and antioxidant potential were determined using the Folin-Ciocalteu method, total monomeric anthocyanin and ORAC assay, respectively. The antiplatelet potential of the extracts was explored by turbidimetry. Microwave extraction showed higher phenol content and antioxidant activity in most extracts. Soja landrace extract obtained by microwave-assisted extraction showed higher phenol content and antioxidant activity (893.45 ± 87.30 mg GAE/g and 35,642.85 ± 2588.88 ORAC μmolTE/g, respectively). Although most of the extracts obtained by microwave-assisted extraction showed antiplatelet activity, the extract of Hallado Aleman landrace obtained by ultrasound-assisted extraction (IC50 = 0.152 ± 0.018 mg/mL) had the highest antiplatelet potential. The extraction method, MAE and UAE, influences the biological potential of the beans, specifically the antiplatelet activity and antioxidant activity. The functional value of this legume for direct consumption by the population was evidenced, as well as its inclusion in food formulations.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT Programa Regional, Gore Maule R0912001, Casilla 1007, Talca 3480094, Chile; (L.R.); (A.P.); (D.M.); (B.C.)
| | - Andrea Plaza
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT Programa Regional, Gore Maule R0912001, Casilla 1007, Talca 3480094, Chile; (L.R.); (A.P.); (D.M.); (B.C.)
| | - Diego Méndez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT Programa Regional, Gore Maule R0912001, Casilla 1007, Talca 3480094, Chile; (L.R.); (A.P.); (D.M.); (B.C.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT Programa Regional, Gore Maule R0912001, Casilla 1007, Talca 3480094, Chile; (L.R.); (A.P.); (D.M.); (B.C.)
| | - Francisca Tellería
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile;
- Correspondence: (I.P.); (E.F.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile;
- Correspondence: (I.P.); (E.F.)
| |
Collapse
|
26
|
Effects of Dietary Ferulic Acid Supplementation on Hepatic Injuries in Tianfu Broilers Challenged with Lipopolysaccharide. Toxins (Basel) 2022; 14:toxins14030227. [PMID: 35324724 PMCID: PMC8955363 DOI: 10.3390/toxins14030227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers.
Collapse
|
27
|
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, Fuentes E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases-Cardioprotective Potential of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:186. [PMID: 35050073 PMCID: PMC8779353 DOI: 10.3390/plants11020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 05/07/2023]
Abstract
In terms of safe and healthy food, beans play a relevant role. This crop belongs to the species of Phaseolusvulgaris L., being the most consumed legume worldwide, both for poor and developed countries, the latter seek to direct their diet to healthy feeding, mainly low in fat. Phaseolus vulgaris L. stands out in this area-an important source of protein, vitamins, essential minerals, soluble fiber, starch, phytochemicals, and low in fat from foods. This species has been attributed many beneficial properties for health; it has effects on the circulatory system, immune system, digestive system, among others. It has been suggested that Phaseolus vulgaris L. has a relevant role in the prevention of cardiovascular events, the main cause of mortality and morbidity worldwide. Conversely, the decrease in the consumption of this legume has been related to an increase in the prevalence of cardiovascular diseases. This review will allow us to relate the nutritional level of this species with cardiovascular events, based on the correlation of the main bioactive compounds and their role as cardiovascular protectors, in addition to revealing the main mechanisms that explain the cardioprotective effects regulated by the bioactive components.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Diego Mendez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Hector Montecino
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| |
Collapse
|
28
|
Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci 2021; 284:119921. [PMID: 34481866 DOI: 10.1016/j.lfs.2021.119921] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid, a kind of phenolic substance widely existing in plants, is an important active component of many traditional Chinese medicines. So far, it has been proved that ferulic acid has a variety of biological activities, especially in oxidative stress, inflammation, vascular endothelial injury, fibrosis, apoptosis and platelet aggregation. Many studies have shown that ferulic acid can inhibit PI3K/AKT pathway, the production of ROS and the activity of aldose reductase. The anti-inflammatory effect of ferulic acid is mainly related to the levels of PPAR γ, CAM and NF-κ B and p38 MAPK signaling pathways. Ferulic acid not only protects vascular endothelium by ERK1/2 and NO/ET-1 signal, but also plays an anti-fibrosis role by TGF-β/Smad and MMPs/TIMPs system. Moreover, ferulic acid has ant-apoptotic and anti-platelet effects. In addition to the pharmacological effects of ferulic acid, its pharmacokinetics and derivatives were also discussed in this paper. This review provides the latest summary of the latest research on ferulic acid.
Collapse
|
29
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
30
|
Wang ML, Yang QQ, Ying XH, Li YY, Wu YS, Shou QY, Ma QX, Zhu ZW, Chen ML. Network Pharmacology-Based Approach Uncovers the Mechanism of GuanXinNing Tablet for Treating Thrombus by MAPKs Signal Pathway. Front Pharmacol 2020; 11:652. [PMID: 32477130 PMCID: PMC7237702 DOI: 10.3389/fphar.2020.00652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND GuanXinNing tablet (GXNT), a traditional Chinese patent medicine, has been found to have remarkable antithrombotic effects and can effectively inhibit pro-thrombotic factors in previous studies. However, the mechanism of its antithrombotic effects remains little known. METHODS In this study, we first determined and identified the sources of each main compound in GXNT using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the action targets of the active components, mapped the target genes related to thrombus, and obtained potential antithrombotic targets for active ingredients. We then performed gene ontology (GO) enrichment analyses and KEGG signaling pathway analyses for the action targets, and constructed networks of active component-target and active component-target-pathway for GXNT. Additionally, we evaluated the pharmacodynamic effects of GXNT on thrombus using the rat thrombus model induced by FeCl3, observed the effects of antiplatelet aggregation via platelet assay, and further verified the results predicted by network pharmacology via Western blot. RESULTS In total, 14 active ingredients were identified in GXNT, and 83 action targets were predicted, 17 of which are antithrombotic targets that potentially participate in processes including response to oxidative stress and positive regulation of blood vessel endothelial cell migration. KEGG pathway analyses revealed that the predicted action targets were involved in multiple signal pathways, such as MAPK, IL-17, and platelet activation. Pharmacodynamics study found that GXNT could significantly reduce the thrombus length and weight, lower platelet aggregation function, and decrease the levels of Fbg and PAI-1. In addition, GXNT could significantly increase 6-keto-PGF1α content and regulate the ratio of TXB2/6-keto-PGF1α, while not having dramatic effects on TXB2. GXNT was also observed to visibly inhibit maximum platelet aggregation. Herein, we further studied the thrombus-related MAPKs signaling pathway and found that GXNT could significantly reduce the phosphorylation levels of p38MAPK, ERK, and JNK proteins in platelet. CONCLUSIONS This study revealed the pharmacodynamic material basis of GXNT and its potential multicomponent-multitarget-multipath pharmacological effects, confirmed the antithrombotic effects of GXNT, and showed that its mechanism may be related to inhibiting phosphorylation of p38, ERK, and JNK proteins in MAPKs signaling pathway, partially verifying the results from network pharmacology. The results from this study could provide a theoretical basis for the development and clinical application of GXNT.
Collapse
Affiliation(s)
- Mu-Lan Wang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Qin-Qin Yang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xu-Hui Ying
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Yuan-Yuan Li
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang-Sheng Wu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Yang Shou
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quan-Xin Ma
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-Wei Zhu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Min-Li Chen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Alsulays BB, Jamil S, Raish M, Ansari MA, Ahmad A, Alalaiwe A, Alshahrani SM, Alshetaili AS, Ansari MJ, Alshehri SM, haq N. Influences of Ferulic Acid on Pharmacokinetics of Carbamazepine in Rats: Possible Mechanism of Herb/food-drug Interactions. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.978.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Zhang SH, Liu D, Hu Q, Zhu J, Wang S, Zhou S. Ferulic acid ameliorates pentylenetetrazol-induced seizures by reducing neuron cell death. Epilepsy Res 2019; 156:106183. [PMID: 31404716 DOI: 10.1016/j.eplepsyres.2019.106183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
To investigate the neuroprotective effect of ferulic acid (FA) in a pentylenetetrazol (PTZ)-induced seizures model in rat, the motor response, spatial learning ability and memory capability of the rats were assessed. Both the antioxidation and anti-apoptosis pathways were also investigated. In this study, male Wistar rats were randomly divided into 3 groups (n = 12 in each group). For 28 days, the rats were administered saline alone (i.p. normal saline, NS group), PTZ (40 mg/kg, i.p., PTZ group) once daily to induce seizures, or FA (i.p. 60 mg/kg) 20 min before being given PTZ (40 mg/kg, i.p., FA + PTZ group) to assess the neuroprotective effect of FA. The motor response of the rats was analysed with the Racine scale. The spatial learning and memory capacity of the rats were assessed by the Morris water maze test. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured, and both in situ staining with the DNA-binding bisbenzimide Hoechst 33258 and TUNEL assays were used to assess apoptosis. Western blotting was used to further analyse the expression of Apaf-1, caspase-9, caspase-3, Bcl-2, Bid, Bax, cleaved caspase-3 and cytochrome c. The results showed that compared to the those of the PTZ group, FA pre-treatment significantly (p < 0.01) reduced the Racine scores starting at day 4, prolonged the latency of the onset of seizure at day 28, reduced the escape latency period starting at day 2, increased the frequency of crossing the platform location, increased the SOD activity, reduced the MDA content and apoptosis percentage, and upregulated the Bcl-2 levels whilst downregulating the Bax, cytochrome c, Apaf-1, caspase-9, caspase-3, cleaved caspase-3 and Bid expression levels. This study demonstrated that pre-treatment with FA exerts strong neuroprotective effects by reducing the motor response and by improving spatial learning ability and memory capacity. The neuroprotective effect may be a result of a reduction in neuron cell death that occurs via the antioxidative and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Shu-Hong Zhang
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Donghai Liu
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Qingyun Hu
- Department of Anatomy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinling Zhu
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| | - Shuqiu Wang
- Department of Pathophysiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Shaobo Zhou
- Department of Pathophysiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|
33
|
Zhou Q, Gong X, Kuang G, Jiang R, Xie T, Tie H, Chen X, Li K, Wan J, Wang B. Ferulic Acid Protected from Kidney Ischemia Reperfusion Injury in Mice: Possible Mechanism Through Increasing Adenosine Generation via HIF-1α. Inflammation 2019; 41:2068-2078. [PMID: 30143933 DOI: 10.1007/s10753-018-0850-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferulic acid (FA), derived from fruits and vegetables, is well-known as a potent antioxidant of scavenging free radicals. However, the role and underlying mechanism of FA on kidney ischemia reperfusion (I/R) injury are limited. Here, we explored the effects of FA on kidney I/R injury. The kidney I/R injury models were carried out by clamping bilateral pedicles for 35 min followed by reperfusion for 24 h. Mice were orally pretreated with different doses of FA for three times 24 h before I/R. The renal function was assessed by serum creatine (Scr) and blood urea nitrogen (BUN). Kidney histology was examined by hematoxylin and eosin (HE) staining and terminal deoxynucleotidly transferased UTP nick-end labeling (TUNEL) assay. Proinflammatory cytokines, caspase-3 activity, adenosine generation, adenosine signaling molecules, and hypoxia inducible factor-1 alpha (HIF-1α) were also detected, respectively. The siHIF-1α adenovirus vectors were in vivo used to inhibit the expression of HIF-1α. The results showed that FA significantly attenuated kidney damage in renal I/R-operated mice as indicated by reducing levels of Scr and BUN, ameliorating renal pathological structural changes, and tubular cells apoptosis. Moreover, FA pretreatment inhibited I/R-induced renal proinflammatory cytokines and neutrophils recruitment. Interestingly, the levels of HIF-α, CD39, and CD73 mRNA and protein as well as adenosine production were all significantly increased after FA pretreatment in the kidney of I/R-performed mice, and inhibiting HIF-α expression using siRNA abolished this protection of FA on I/R-induced acute kidney injury as evidenced by more severe renal damage and reduced adenosine production. Our findings indicated that FA protected against kidney I/R injury by reducing apoptosis, alleviating inflammation, increasing adenosine generation, and upregulating CD39 and CD73 expression, which might be mediated by HIF-1α.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianjun Xie
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - HongTao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - XiaHong Chen
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - JingYuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Wang P, Jiang S, Zhao Y, Sun S, Wen X, Guo X, Jiang Z. A UPLC-MS/MS Method for Simultaneous Determination of Six Bioactive Compounds in Rat Plasma, and its Application to Pharmacokinetic Studies of Naoshuantong Granule in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180409143452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive
constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive
and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed
and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV,
Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine
as internal standard (IS).
Methods:
The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate
after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d.,
1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and
acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive
and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds.
Result:
All calibration curves showed good linearity (r>0.99) over a wide concentration range. The
intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to
107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and
no severe matrix effect was observed.
Conclusion:
The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong
Granule.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shenmeng Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yu Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shuo Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xiaoli Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xingjie Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zhen Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
35
|
Liu J, Huang Z, Ma W, Peng S, Li Y, Miranda KM, Tian J, Zhang Y. Design and synthesis of rosiglitazone-ferulic acid-nitric oxide donor trihybrids for improving glucose tolerance. Eur J Med Chem 2019; 162:650-665. [PMID: 30481687 DOI: 10.1016/j.ejmech.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/11/2023]
Abstract
Glucose intolerance is associated with metabolic syndrome and type 2 diabetes mellitus (T2DM) while some new therapeutic drugs, such as rosiglitazone (Rosi), for T2DM can cause severe cardiovascular side effects. Herein we report the synthesis of Rosi-ferulic acid (FA)-nitric oxide (NO) donor trihybrids to improve glucose tolerance and minimize the side effects. In comparison with Rosi, the most active compound 21 exhibited better effects on improving glucose tolerance, which was associated with its NO production, antioxidant and anti-inflammatory activities. Furthermore, 21 displayed relatively high stability in the simulated gastrointestinal environments and human liver microsomes, and released Rosi in plasma. More importantly, 21, unlike Rosi, had little stimulatory effect on the membrane translocation of aquaporin-2 (AQP2) in kidney collecting duct epithelial cells. These, together with a better safety profile, suggest that the trihybrids, like 21, may be promising candidates for intervention of glucose intolerance-related metabolic syndrome and T2DM.
Collapse
Affiliation(s)
- Jingchao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenhuan Ma
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States.
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, United States
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
36
|
Du F, Zhou Q, Fu X, Shi Y, Chen Y, Fang W, Yang J, Chen G. Synthesis and biological evaluation of 2,2-dimethylbenzopyran derivatives as potent neuroprotection agents. RSC Adv 2019; 9:2498-2508. [PMID: 35520520 PMCID: PMC9059924 DOI: 10.1039/c8ra10424g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
The development of novel neuroprotection agents is of great significance for the treatment of ischemic stroke. In this study, a series of compounds comprising 2,2-dimethylbenzopyran groups and cinnamic acid groups have been synthesized. Preferential combination principles and bioisostere that improved the neuroprotective effect of the compounds were identified for this series via biological activity assay in vitro. Meanwhile, a functional reversal group of the acrylamide amide resulted in the most active compounds. Among them, BN-07 significantly improved the morphology of neurons and obviously increased cell survival rate of primary neurons induced by oxygen glucose deprivation (OGD), superior to clinically used anti-ischemic stroke drug edaravone (Eda). Overall, our findings may provide an alternative strategy for the design of novel anti-ischemic stroke agents with more potency than Eda. Novel compounds comprising 2,2-dimethylbenzopyran and cinnamic acid were synthesized. BN-07 significantly increased survival rate of primary neurons, superior to edaravone.![]()
Collapse
Affiliation(s)
- Fangyu Du
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Qifan Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xiaoxiao Fu
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Wuhong Fang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jingyu Yang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
37
|
Zhu J, Zhang D, Tang H, Zhao G. Structure relationship of non–covalent interactions between phenolic acids and arabinan–rich pectic polysaccharides from rapeseed meal. Int J Biol Macromol 2018; 120:2597-2603. [DOI: 10.1016/j.ijbiomac.2018.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|
38
|
Zhao YH, Liu NW, Ke CC, Liu BW, Chen YA, Luo C, Zhang Q, Xia ZY, Liu RS. Combined treatment of sodium ferulate, n-butylidenephthalide, and ADSCs rehabilitates neurovascular unit in rats after photothrombotic stroke. J Cell Mol Med 2018; 23:126-142. [PMID: 30421523 PMCID: PMC6307846 DOI: 10.1111/jcmm.13894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
The remodelling of structural and functional neurovascular unit (NVU) becomes a central therapeutic strategy after cerebral ischaemic stroke. In the present study, we investigated the effect of combined therapy of sodium ferulate (SF), n‐butylidenephthalide (BP) and adipose‐derived stromal cells (ADSCs) to ameliorate the injured NVU in the photochemically induced thrombotic stroke in rats. After solely or combined treatment, the neovascularization, activation of astrocytes, neurogenesis, expressions of vascular endothelial growth factor (VEGF) and claudin‐5 were assessed by immunohistochemical or immunofluorescence staining. In order to uncover the underlying mechanism of therapeutic effect, signalling of protein kinase B/mammalian target of rapamycin (AKT/mTOR), extracellular signal‐regulated kinase 1/2 (ERK1/2), and Notch1 in infarct zone were analysed by western blot. 18F‐2‐deoxy‐glucose/positron emission tomography, magnetic resonance imaging, Evans blue staining were employed to evaluate the glucose metabolism, cerebral blood flow (CBF), and brain‐blood barrier (BBB) permeability, respectively. The results showed that combined treatment increased the neovascularization, neurogenesis, and VEGF secretion, modulated the astrocyte activation, enhanced the regional CBF, and glucose metabolism, as well as reduced BBB permeability and promoted claudin‐5 expression, indicating the restoration of structure and function of NVU. The activation of ERK1/2 and Notch1 pathways and inhibition of AKT/mTOR pathway might be involved in the therapeutic mechanism. In summary, we have demonstrated that combined ADSCs with SF and BP, targeting the NVU remodelling, is a potential treatment for ischaemic stroke. These results may provide valuable information for developing future combined cellular and pharmacological therapeutic strategy for ischaemic stroke.
Collapse
Affiliation(s)
- Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Nai-Wei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Yi-An Chen
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qian Zhang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Zhen-Yan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Ren-Shyan Liu
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Qiao L, Chen W. Atheroprotective effects and molecular targets of bioactive compounds from traditional Chinese medicine. Pharmacol Res 2018; 135:212-229. [PMID: 30107203 DOI: 10.1016/j.phrs.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023]
Abstract
Traditional Chinese medicine (TCM) has served the Chinese people since antiquity, and is playing an important role in today's healthcare. However, there has been controversy in the use of these traditional herbs due to unclear components and absence of scientific proof. As China plans to modernize traditional medicine, successful attempts to better understand the molecular mechanisms of TCM have been made by focusing on isolating active ingredients from these remedies. In this review, we critically examined the current evidence on atheroprotective effects of bioactive compounds from TCM using in vitro or in vivo models in the past two decades. A total of 47 active compounds were included in our review, which were introduced in the order of chemical structures, source, model, efficacy and mechanism. Notablely, this review highlighted the cellular and molecular mechanisms of these active compounds in prevention and treatment of atherosclerosis. Two compounds were also involved in double-blind, randomized, placebo-controlled clinical trials (RCTs). Besides, we introduced the legislations of the People's Republic of China ensuring quality and safety of products used in TCM. In summary, studies on bioactive compounds from TCM will provide a new approach for better management of atherosclerosis.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
40
|
Liu W, Li YL, Feng MT, Zhao YW, Ding X, He B, Liu X. Application of Feedback System Control Optimization Technique in Combined Use of Dual Antiplatelet Therapy and Herbal Medicines. Front Physiol 2018; 9:491. [PMID: 29780330 PMCID: PMC5945866 DOI: 10.3389/fphys.2018.00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT) might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC) optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines. Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates. Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI) values. Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different drugs which might provide useful information for research of signal cascades in platelet.
Collapse
Affiliation(s)
- Wang Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Long Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Ting Feng
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Wei Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
de Lima FA, Martins IM, Faria A, Calhau C, Azevedo J, Fernandes I, Mateus N, Macedo GA. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids. Food Funct 2018. [DOI: 10.1039/c7fo01645j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymatic biotransformation enhanced the release of phenolic acids and Caco-2 transepithelial transport of vanillic acid.
Collapse
Affiliation(s)
| | - Isabela Mateus Martins
- Department of Food and Nutrition
- Faculty of Food Engineering
- University of Campinas – Unicamp
- Campinas
- SP – Brazil
| | - Ana Faria
- Nutrição e Metabolismo
- Nova Medical School
- Universidade Nova de Lisboa
- 1169-056 Lisboa
- Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo
- Nova Medical School
- Universidade Nova de Lisboa
- 1169-056 Lisboa
- Portugal
| | - Joana Azevedo
- REQUIMTE/LAQV
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Iva Fernandes
- REQUIMTE/LAQV
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Nuno Mateus
- REQUIMTE/LAQV
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Gabriela Alves Macedo
- Department of Food and Nutrition
- Faculty of Food Engineering
- University of Campinas – Unicamp
- Campinas
- SP – Brazil
| |
Collapse
|
42
|
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci 2017; 193:64-76. [PMID: 29196052 DOI: 10.1016/j.lfs.2017.11.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
AIMS Treatment of the ischemic stroke has remained a major healthcare challenge. The phenolic compound, ferulic acid (FA), has shown promising antioxidant and neuroprotective effects, however, low bioavailability may negatively affect its efficiency. This, prompted us to incorporate FA into the nanostructured lipid carriers (FA-NLCs) and evaluate its therapeutic potential in in vitro and in vivo models of ischemic stroke. MAIN METHODS FA-NLCs were prepared by high-pressure homogenization followed by physicochemical characterization, evaluation of the bioactivity of FA-NLCs in oxygen-glucose deprivation (OGD) and global cerebral ischemia/reperfusion (I/R) injury and implication of phosphatidylinositol 3-kinase (PI3K) pathway in this regard. KEY FINDINGS Formation of FA-NLCs which exhibited a controlled release profile, was confirmed by scanning electron microscope and differential scanning calorimetry. 1- and 8-h OGD followed by 24h re-oxygenation significantly reduced PC12 cell viability, increased lactate dehydrogenase activity and number of condensed nuclei, and induced oxidative stress as revealed by increased malondialdehyde and decreased glutathione content and superoxide dismutase and catalase activities. FA (80 and 100μM) reduced the cytotoxicity, oxidative stress, and cellular damage only after 1-h OGD, while, FA-NLCs (containing 80 and 100μM of FA) were effective at both time points. Intravenous injections of FA-NLCs (20 and 25mg/kg) into rats significantly attenuated I/R-induced neurobehavioural deficits, cellular damage, and oxidative stress, while, FA failed. Pre-treatment with PI3K inhibitor, LY294002, abolished the protective effects against OGD or I/R. SIGNIFICANCE FA-NLCs by improving the pharmacological profile of FA and activating PI3K pathway might be of therapeutic value in cerebral stroke.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Arbabi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Choi JH, Park JK, Kim KM, Lee HJ, Kim S. In vitroandin vivoantithrombotic and cytotoxicity effects of ferulic acid. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology; Gwangju University; Gwangju 503-703 Republic of Korea
| | - Jong-Kook Park
- Department of Oriental Medicinal Biotechnology, College of Life Sciences; Kyung Hee University; Yongin 446-701 Republic of Korea
- SEROM Company; Jangheung-gun 529-832 Republic of Korea
| | - Ki-Man Kim
- SEROM Company; Jangheung-gun 529-832 Republic of Korea
| | - Hyo-Jeong Lee
- Department of Food Science and Biotechnology; Gwangju University; Gwangju 503-703 Republic of Korea
| | - Seung Kim
- Department of Food Science and Biotechnology; Gwangju University; Gwangju 503-703 Republic of Korea
| |
Collapse
|
44
|
Ilavenil S, Kim DH, Srigopalram S, Kuppusamy P, Valan Arasu M, Lee KD, Lee JC, Song YH, Jeong YI, Choi KC. Ferulic acid in Lolium multiflorum inhibits adipogenesis in 3T3-L1 cells and reduced high-fat-diet-induced obesity in Swiss albino mice via regulating p38MAPK and p44/42 signal pathways. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
45
|
Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017; 40:1444-1456. [PMID: 28901374 PMCID: PMC5627889 DOI: 10.3892/ijmm.2017.3127] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion (I/R)-induced brain injury in vivo and in vitro through hematoxylin and eosin (H&E) and Nissl staining assays, flow cytometry, Hoechst 33258 staining, quantitative PCR, western blot analysis and fluorescence microscopic analysis. In this study, models of cerebral I/R injury were established using rats and pheochromocytoma (PC-12) cells. The results revealed that treatment with FA significantly attenuated memory impairment, and reduced hippocampal neuronal apoptosis and oxidative stress in a dose-dependent manner. The results from in vitro experiments also indicated that FA protected the PC-12 cells against I/R-induced reactive oxygen species (ROS) generation and apoptosis by inhibiting apoptosis, Ca2+ influx, superoxide anion (O2-), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) production in a concentration-dependent manner. Moreover, FA inactivated the Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) pathway. MyD88 overexpression abolished the neuroprotective effects of FA. On the whole, we found that FA attenuated memory dysfunction and exerted protective effects against oxidative stress and apoptosis induced by I/R injury by inhibiting the TLR4/MyD88 signaling pathway. This study supports the view that FA may be a promising neuroprotective agent for use in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuanyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
46
|
Dutra LA, Guanaes JFO, Johmann N, Lopes Pires ME, Chin CM, Marcondes S, Dos Santos JL. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. Bioorg Med Chem Lett 2017; 27:2450-2453. [PMID: 28400236 DOI: 10.1016/j.bmcl.2017.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 11/26/2022]
Abstract
Resveratrol (RVT) is a stilbene with a protective effect on the cardiovascular system; however, drawbacks including low bioavailability and fast metabolism limit its efficacy. In this work we described new resveratrol derivatives with nitric oxide (NO) release properties, ability to inhibit platelet aggregation and in vivo antithrombotic effect. Compounds (4a-f) were able to release NO in vitro, at levels ranging from 24.1% to 27.4%. All compounds (2a-f and 4a-f) have exhibited platelet aggregation inhibition using as agonists ADP, collagen and arachidonic acid. The most active compound (4f) showed reduced bleeding time compared to acetylsalicylic acid (ASA) and protected up to 80% against in vivo thromboembolic events. These findings suggest that hybrid resveratrol-furoxan (4f) is a novel lead compound able to prevent platelet aggregation and thromboembolic events.
Collapse
Affiliation(s)
- Luiz Antonio Dutra
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| | | | - Nadine Johmann
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Chung Man Chin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Sisi Marcondes
- University of Campinas (Unicamp), Faculty of Medical Science, Campinas, SP, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|