1
|
Hara-Tsuchiya C, Ujihara S, Hirose SI, Kitanaga Y, Jono K, Sasaki-Iwaoka H. A novel retinoic acid receptor-α inhibitor, AS4040605, inhibits ILC2 activity. Eur J Pharmacol 2025; 999:177682. [PMID: 40288557 DOI: 10.1016/j.ejphar.2025.177682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
In recent years, many studies have focused on type 2 innate lymphoid cells (ILC2s), which are a new type of cell that produces type 2 cytokines such as interleukin (IL)-4, IL-5, and IL-13. Numerous reports have described the relationship between ILC2s and allergic diseases, and it is expected that the control of ILC2 function will lead to the suppression of allergies and other diseases. To date, however, no therapeutic drugs that directly target ILC2s have yet appeared. The purpose of this study was to identify new compounds which control ILC2 function and lead to drug discovery. We attempted to obtain ILC2 inhibitors by a phenotypic screening approach using mouse primary cells. Accordingly, we established a robust assay system to measure IL-5 production by IL-2+IL-33 stimulation using mouse lung ILC2s and conducted high-throughput screening (HTS). Approximately 30,000 compounds were examined, with structure activity relationship analysis conducted to select AS4040605 from AS3382974-related compounds. We discovered a novel compound, AS4040605, that inhibits the activity of mouse and human ILC2s and identified that its target is Retinoic acid receptor-α (RARα). With regard to mechanism of action, we also discovered that AS4040605 may act an inverse agonist of RARα.
Collapse
Affiliation(s)
| | - Satoru Ujihara
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Sho-Ichi Hirose
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Yukihiro Kitanaga
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Katsuma Jono
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | | |
Collapse
|
2
|
Roy A, DePamphilis ML. Selective Termination of Autophagy-Dependent Cancers. Cells 2024; 13:1096. [PMID: 38994949 PMCID: PMC11240546 DOI: 10.3390/cells13131096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.
Collapse
Affiliation(s)
- Ajit Roy
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Room 6N105, 10 Center Dr., Bethesda, MD 20892-0001, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Room 4B413, 6 Center Dr., Bethesda, MD 20892-2790, USA
| |
Collapse
|
3
|
Wu A, Shi K, Wang J, Zhang R, Wang Y. Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors. Eur J Med Chem 2024; 263:115923. [PMID: 37981443 DOI: 10.1016/j.ejmech.2023.115923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a huge impact on global health. To respond to rapidly mutating viruses and to prepare for the next pandemic, there is an urgent need to develop small molecule therapies that target critical stages of the SARS-CoV-2 life cycle. Inhibiting the entry process of the virus can effectively control viral infection and play a role in prevention and treatment. Host factors involved in this process, such as ACE2, TMPRSS2, ADAM17, furin, PIKfyve, TPC2, CTSL, AAK1, V-ATPase, HSPG, and NRP1, have been found to be potentially good targets with stability. Through further exploration of the cell entry process of SARS-CoV-2, small-molecule drugs targeting these host factors have been developed. This review focuses on the structural functions of potential host cell targets during the entry of SARS-CoV-2 into host cells. The research progress, chemical structure, structure-activity relationship, and clinical value of small-molecule inhibitors against COVID-19 are reviewed to provide a reference for the development of small-molecule drugs against COVID-19.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kunyu Shi
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Ruofei Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Ni SH, Xu JD, Sun SN, Li Y, Zhou Z, Li H, Liu X, Deng JP, Huang YS, Chen ZX, Feng WJ, Wang JJ, Xian SX, Yang ZQ, Wang S, Wang LJ, Lu L. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc Res 2021; 118:1303-1320. [PMID: 34100920 DOI: 10.1093/cvr/cvab193] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS The goal of our study was to investigate the heterogeneity of cardiac macrophages (CMφs) in mice with transverse aortic constriction (TAC) via single-cell sequencing and identify a subset of macrophages associated with heart injury. METHODS AND RESULTS We selected all CMφs from CD45+ cells using single-cell mRNA sequencing data. Through dimension reduction, clustering and enrichment analyses, CD72hi CMφs were identified as a subset of proinflammatory macrophages. The pseudotime trajectory and ChIP-Seq analyses identified Rel as the key transcription factor that induces CD72hi CMφ differentiation. Rel KD and Rel-/- bone marrow chimera mice subjected to TAC showed features of mitigated cardiac injury, including decreased levels of cytokines and ROS, which prohibited cardiomyocyte death. The transfer of adoptive Rel-overexpressing monocytes and CD72hi CMφ injection directly aggravated heart injury in the TAC model. The CD72hi macrophages also exerted proinflammatory and cardiac injury effects associated with myocardial infarction (MI). In humans, patients with heart failure exhibit increased CD72hi CMφ levels following dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). CONCLUSION Bone marrow-derived, Rel-mediated CD72hi macrophages play a proinflammatory role, induce cardiac injury and, thus, may serve as a therapeutic target for multiple cardiovascular diseases. TRANSLATIONAL PERSPECTIVE Heart failure (HF) imposes an enormous clinical and economic burden worldwide and presents limited therapeutic approaches. Given the close association between inflammation and adverse outcomes, proinflammatory immune cells are considered potential therapeutic targets for HF treatment. The present studies identified a specific macrophage subset associated with myocardial injury, which may provide an alternative approach for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin-Dong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zheng Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jia-Jia Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| |
Collapse
|
5
|
Akamatsu M, Mikami N, Ohkura N, Kawakami R, Kitagawa Y, Sugimoto A, Hirota K, Nakamura N, Ujihara S, Kurosaki T, Hamaguchi H, Harada H, Xia G, Morita Y, Aramori I, Narumiya S, Sakaguchi S. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing T reg cells by inhibition of CDK8/19. Sci Immunol 2020; 4:4/40/eaaw2707. [PMID: 31653719 DOI: 10.1126/sciimmunol.aaw2707] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
A promising way to restrain hazardous immune responses, such as autoimmune disease and allergy, is to convert disease-mediating T cells into immunosuppressive regulatory T (Treg) cells. Here, we show that chemical inhibition of the cyclin-dependent kinase 8 (CDK8) and CDK19, or knockdown/knockout of the CDK8 or CDK19 gene, is able to induce Foxp3, a key transcription factor controlling Treg cell function, in antigen-stimulated effector/memory as well as naïve CD4+ and CD8+ T cells. The induction was associated with STAT5 activation, independent of TGF-β action, and not affected by inflammatory cytokines. Furthermore, in vivo administration of a newly developed CDK8/19 inhibitor along with antigen immunization generated functionally stable antigen-specific Foxp3+ Treg cells, which effectively suppressed skin contact hypersensitivity and autoimmune disease in animal models. The results indicate that CDK8/19 is physiologically repressing Foxp3 expression in activated conventional T cells and that its pharmacological inhibition enables conversion of antigen-specific effector/memory T cells into Foxp3+ Treg cells for the treatment of various immunological diseases.
Collapse
Affiliation(s)
- Masahiko Akamatsu
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoji Kawakami
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohko Kitagawa
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Sugimoto
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiji Hirota
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan
| | - Naoto Nakamura
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Satoru Ujihara
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Toshio Kurosaki
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Hamaguchi
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hironori Harada
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Guliang Xia
- Astellas Research Institute of America, Skokie, IL 60077, USA
| | - Yoshiaki Morita
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan. .,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
miR32-5p promoted vascular smooth muscle cell calcification by upregulating TNFα in the microenvironment. BMC Immunol 2020; 21:3. [PMID: 31952480 PMCID: PMC6967090 DOI: 10.1186/s12865-019-0324-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vascular calcification is often associated with chronic inflammation and is a risk factor for brain arterial stiffness. Our previous results showed that miR32-5p was positively correlated with vascular smooth muscle cells (VSMC) calcification, but it is unclear whether miR32-5p promoted VSMC calcification by regulating inflammatory factor production. RESULTS In this study, bioinformatics analysis was used to select tumour necrosis factor α (TNFα) as a candidate inflammatory factor associated with calcification. Moreover, alizarin red staining and qRT-PCR analysis revealed that TNFα produced by BV2 cells was the key promoting factor of VSMC calcification. Interestingly, the expression of TNFα was significantly increased at the mRNA and protein levels after miR32-5p mimic treatment but significantly decreased after miR32-5p antagomir treatment. To explore the mechanism of the regulation of TNFα expression by miR32-5p, bioinformatics analysis indicated that PIKfyve was a candidate target gene of miR32-5p, and luciferase assays verified that the expression of PIKfyve was significantly repressed by miR32-5p mimics. Importantly, rescue experiments showed that the expression of TNFα in BV2 cells treated with miR32-5p antagomir and the PIKfyve inhibitor YM201636 was significantly increased. CONCLUSIONS The production of TNFα in microglia could be affected by miR32-5p targeting PIKfyve, and these results will be beneficial to reveal the mechanism of brain arterial calcification.
Collapse
|
7
|
Ikonomov OC, Sbrissa D, Shisheva A. Small molecule PIKfyve inhibitors as cancer therapeutics: Translational promises and limitations. Toxicol Appl Pharmacol 2019; 383:114771. [PMID: 31628917 DOI: 10.1016/j.taap.2019.114771] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022]
Abstract
Through synthesis of two rare phosphoinositides, PtdIns(3,5)P2 and PtdIns5P, the ubiquitously expressed phosphoinositide kinase PIKfyve is implicated in pleiotropic cellular functions. Small molecules specifically inhibiting PIKfyve activity cause cytoplasmic vacuolation in all dividing cells in culture yet trigger non-apoptotic death through excessive vacuolation only in cancer cells. Intriguingly, cancer cell toxicity appears to be inhibitor-specific suggesting that additional targets beyond PIKfyve are affected. One PIKfyve inhibitor - apilimod - is already in clinical trials for treatment of B-cell malignancies. However, apilimod is inactivated in cultured cells and exhibits unexpectedly low plasma levels in patients treated with maximum oral dosage. Thus, the potential widespread use of PIKfyve inhibitors as cancer therapeutics requires progress on multiple fronts: (i) advances in methods for isolating relevant cancer cells from individual patients; (ii) delineation of the molecular mechanisms potentiating the vacuolation induced by PIKfyve inhibitors in sensitive cancer cells; (iii) design of PIKfyve inhibitors with favorable pharmacokinetics; and (iv) development of effective drug combinations.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Diego Sbrissa
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
de Campos CB, Zhu YX, Sepetov N, Romanov S, Bruins LA, Shi CX, Stein CK, Petit JL, Polito AN, Sharik ME, Meermeier EW, Ahmann GJ, Armenta IDL, Kruse J, Bergsagel PL, Chesi M, Meurice N, Braggio E, Stewart AK. Identification of PIKfyve kinase as a target in multiple myeloma. Haematologica 2019; 105:1641-1649. [PMID: 31582538 PMCID: PMC7271606 DOI: 10.3324/haematol.2019.222729] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.
Collapse
Affiliation(s)
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | - Laura Ann Bruins
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Chang-Xin Shi
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Caleb K Stein
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Joachim L Petit
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Alysia N Polito
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Meaghen E Sharik
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Erin W Meermeier
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Gregory J Ahmann
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Jonas Kruse
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - P Leif Bergsagel
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Nathalie Meurice
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - A Keith Stewart
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
9
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
10
|
Guo J, Chen J, Lu X, Guo Z, Huang Z, Zeng S, Zhang Y, Zheng B. Proteomic Analysis Reveals Inflammation Modulation of κ/ι-Carrageenan Hexaoses in Lipopolysaccharide-Induced RAW264.7 Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4758-4767. [PMID: 29683320 DOI: 10.1021/acs.jafc.8b01144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
κ/ι-Carrageenan hexaoses (κ/ι-neocarrahexaoses, KCO-4) are a type of carrageenan oligosaccharide that have a broad spectrum of bioactivities due to the presence of sulfate groups. However, the anti-inflammatory capacity of purified carrageenan oligosaccharides and the underlying mechanism has not been completely elucidated. The present study aimed to investigate inflammatory signaling modulation of KCO-4 in LPS-induced macrophages using a quantitative proteomic strategy. KCO-4 inhibited the oversecretion of inflammatory mediators (i.e., NO, TNF-α, IL-1β, IL-8, iNOS, and COX-2). KCO-4 treatment altered proteome profile, and metabolic processes in mitochondria were significantly disrupted. The IPA network analysis proposed that KCO-4 triggered the NF-κB signaling pathway-dependent anti-inflammation process through the inhibition of CD14/Rel@p50 in LPS-induced RAW264.7 macrophages. These data improve our understanding of the anti-inflammatory mechanism and contribute to exposure biomarker screening of κ-carrageenan oligosaccharides.
Collapse
|
11
|
Yokota H. Applications of proteomics in pharmaceutical research and development. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:17-21. [PMID: 29753086 DOI: 10.1016/j.bbapap.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023]
Abstract
The significance of proteomics in the pharmaceutical industry has increased since overcoming initial difficulties. This review discusses recent proteomics publications from pharmaceutical companies to identify new trends in proteomics applications to research and development. Applications of proteomics such as chemical proteomics, protein expression profiling, targeted protein quantitation, analysis of protein-protein interactions and post-translational modification are widely used by various sections of the industry. Technological advancements in proteomics will further accelerate pharmaceutical research and development.
Collapse
Affiliation(s)
- Hiroyuki Yokota
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi 305-8585, Japan.
| |
Collapse
|
12
|
Fogarty K, Kashem M, Bauer A, Bernardino A, Brennan D, Cook B, Farrow N, Molinaro T, Nelson R. Development of Three Orthogonal Assays Suitable for the Identification and Qualification of PIKfyve Inhibitors. Assay Drug Dev Technol 2018; 15:210-219. [PMID: 28723271 DOI: 10.1089/adt.2017.790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
FYVE-type zinc finger-containing phosphoinositide kinase (PIKfyve) catalyzes the formation of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol 3-phosphate (PI(3)P). PIKfyve has been implicated in multiple cellular processes, and its role in the regulation of toll-like receptor (TLR) pathways and the production of proinflammatory cytokines has sparked interest in developing small-molecule PIKfyve inhibitors as potential therapeutics to treat autoimmune and inflammatory diseases. We developed three orthogonal assays to identify and qualify small-molecule inhibitors of PIKfyve: (1) a purified component microfluidic enzyme assay that measures the conversion of fluorescently labeled PI(3)P to PI(3,5)P2 by purified recombinant full-length human 6His-PIKfyve (rPIKfyve); (2) an intracellular protein stabilization assay using the kinase domain of PIKfyve expressed in HEK293 cells; and (3) a cell-based functional assay that measures the production of interleukin (IL)-12p70 in human peripheral blood mononuclear cells stimulated with TLR agonists lipopolysaccharide and R848. We determined apparent Km values for both ATP and labeled PI(3)P in the rPIKfyve enzyme assay and evaluated the enzyme's ability to use phosphatidylinositol as a substrate. We also tested four reference compounds in the three assays and showed that together these assays provide a platform that is suitable to select promising inhibitors having appropriate functional activity and confirmed cellular target engagement to advance into preclinical models of inflammation.
Collapse
Affiliation(s)
- Kylie Fogarty
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Mohammed Kashem
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Andras Bauer
- 2 Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Alexandra Bernardino
- 2 Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Debra Brennan
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Brian Cook
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Neil Farrow
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Teresa Molinaro
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| | - Richard Nelson
- 1 Department of Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc. , Ridgefield, Connecticut
| |
Collapse
|