1
|
Chang B, Hwang Y, Kim I, Park H, Kim Y, Kim S. Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis. Arch Dermatol Res 2025; 317:304. [PMID: 39853610 DOI: 10.1007/s00403-024-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025]
Abstract
Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration. In our study, Moracin M significantly increased cell proliferation in human dermal papilla cells (hDPCs) during both the anagen and catagen phases and promoted cell migration in human umbilical vein endothelial cells (HUVECs) without cytotoxicity at concentrations up to 50 µM. Mechanistic analysis revealed that moracin M enhanced Wnt3a, GSK-3β phosphorylation and increased non-phospho β-catenin levels, activating Wnt signaling and upregulating transcription factors LEF, TCF, and AXIN2. This resulted in elevated levels of growth factors VEGF, FGF2, KGF, HGF and MYC in hDPCs, effects comparable to those of minoxidil. Additionally, moracin M significantly increased protein and mRNA levels of VEGF, FGF2, and KGF in hDPCs under IFN-γ-induced inflammatory conditions. Moracin M treatments also resulted in notable wound width reductions in a dose-dependent manner. Further investigation showed that moracin M stimulated MMP-2 and MMP-9 expression. These findings indicate that moracin M significantly enhances hair growth through the promotion of cell proliferation and angiogenesis, particularly via the activation of the Wnt signaling pathway in dermal papilla cells, presenting it as a promising therapeutic alternative to current treatments.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
| | - Yuri Hwang
- ForBioKorea Co., Ltd., 917, 14, Gasan digital 2-ro, Geumcheon-gu, Seoul, 08592, South Korea
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - In Kim
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Hyungmin Park
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.
| |
Collapse
|
2
|
Tang Z, Feng H, Chen X, Shao S, Li C. SNORC knockdown alleviates inflammation, autophagy defect and matrix degradation of chondrocytes in osteoarthritis development. Mol Cell Biochem 2024; 479:2323-2335. [PMID: 37659033 DOI: 10.1007/s11010-023-04842-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Excessive inflammation and autophagy defect of chondrocytes play important roles in the pathological process of osteoarthritis (OA). The present study aimed to clarify the roles of small novel rich in cartilage (SNORC) in these pathological changes of chondrocytes in OA. Bioinformatics analysis of GEO dataset GSE207881 displayed that SNORC was a potential biomarker for OA. As confirmed by quantitative real-time PCR, immunohistochemical staining and western blotting, SNORC was significantly up-regulated in cartilage of OA rat model and interleukin (IL)-1β-stimulated primary rat articular chondrocytes in contrast to their corresponding normal control. Knocking down SNORC in IL-1β-induced chondrocytes obviously suppressed the production of nitric oxide (NO), IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) to alleviate inflammation, and reduced the protein levels of a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) and matrix metallopeptidase (MMP)13 and elevated collagen type 2 alpha 1 (COL2A1) level to improve matrix degradation. Down-regulation of SNORC increased Beclin1 expression and LC3II/LC3I ratio, but suppressed p62 expression to restore impaired autophagy in IL-1β-induced chondrocytes. Moreover, down-regulating SNORC mitigated mitochondrial dysfunction and apoptosis in IL-1β-stimulated chondrocytes. Mechanically, SNORC simultaneously activated the phosphatidylinositol-3-kinase/serine threonine kinase (PI3K/AKT) and c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in the IL-1β-induced chondrocyte, while re-activating the PI3K and JNK signals abolished the suppressive effect of down-regulating SNORC on IL-1β-induced chondrocyte damage. In a word, SNORC knockdown alleviates inflammation, matrix degradation, autophagy defect and excessive apoptosis of chondrocytes during OA development via suppressing the PI3K and JNK signaling pathway.
Collapse
Affiliation(s)
- Zhifang Tang
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Hanzhen Feng
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Xusheng Chen
- Kunming Medical University, Kunming, 650500, China
| | - Shuiyan Shao
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Chuan Li
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, No.212 Daguan Road, Xishan District, Kunming, Yunnan, 650000, China.
| |
Collapse
|
3
|
Liu XY, Huang JC, Zhang T, Wang HR, Xu QH, Xia YG, Xu AJ, Yang ZY, Sun L, Zhao WJ, Zhao J, Qian F, Hou AJ. Cyclo(L-Pro-L-Trp) from Chilobrachys jingzhao alleviates formalin-induced inflammatory pain by suppressing the inflammatory response and inhibiting TRAF6-mediated MAPK and NF-κB signaling pathways. Int Immunopharmacol 2024; 139:112602. [PMID: 39033660 DOI: 10.1016/j.intimp.2024.112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Chronic pain has emerged as a significant public health issue, seriously affecting patients' quality of life and psychological well-being, with a lack of effective pharmacological treatments. Numerous studies have indicated that macrophages play a crucial role in inflammatory pain, and targeting neuro-immune interactions for drug development may represent a promising direction for pain management. Chilobrachys jingzhao (C. jingzhao) is used as a folk medicine of the Li nationality with the efficacy of eliminating swelling, detoxicating, and relieving pain, and the related products are widely used in the market. However, the chemical constituents of C. jingzhao have not been reported, and the pharmacodynamic substance and the precise functional mechanism are unrevealed. Here we isolated a cyclic dipeptide, cyclo(L-Pro-L-Trp) (CPT) from C. jingzhao for the first time. CPT remarkably alleviated formalin-induced inflammatory pain and significantly inhibited inflammatory responses. In vivo, CPT attenuated neutrophil infiltration and plantar tissue edema and suppressed the mRNA expression of pro-inflammatory molecules. In vitro, CPT suppressed inflammation triggered by lipopolysaccharide (LPS) in both RAW 264.7 and iBMDM cells, reducing expressions of inducible nitric oxide synthase (iNOS), superoxide, and pro-inflammatory molecules. A mechanistic study revealed that CPT exerted an anti-inflammatory activity by blocking the mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, as well as alleviating the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Our results elucidated the pharmacodynamic material basis of C. jingzhao, and CPT can be a promising lead for alleviating inflammation and inflammatory pain.
Collapse
Affiliation(s)
- Xin-Yue Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin-Chang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong New District, Shanghai 200137, China
| | - Han-Rui Wang
- Hainan Spider King Biotechnology Co., Ltd., Haikou 570125, China
| | - Qi-Hui Xu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Gui Xia
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210008, China
| | - A-Jing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ze-Yong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Juan Zhao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhao
- Hainan Spider King Biotechnology Co., Ltd., Haikou 570125, China.
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ai-Jun Hou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Olufolabo KO, Lüersen K, Oguntimehin SA, Nchiozem-Ngnitedem VA, Agbebi EA, Faloye KO, Nyamboki DK, Rimbach G, Matasyoh JC, Schmidt B, Moody JO. In vitro and in silico studies reveal antidiabetic properties of arylbenzofurans from the root bark of Morus mesozygia Stapf. Front Pharmacol 2024; 15:1338333. [PMID: 38482058 PMCID: PMC10935558 DOI: 10.3389/fphar.2024.1338333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetes remains an important disease worldwide with about 500 million patients globally. In tropical Africa, Morus mesozygia is traditionally used in the treatment of diabetes. Biological and phytochemical investigation of the root bark extracts of the plant led to the isolation of a new prenylated arylbenzofuran named 7-(3-hydroxy-3-methylbutyl)moracin M (1) and two congeners, moracins P (2) and M (3). When compared to acarbose (IC50 = 486 µM), all the isolated compounds are better inhibitors of α-glucosidase with in vitro IC50 values of 16.9, 16.6, and 40.9 µM, respectively. However, they were not active against α-amylase. The compounds also demonstrated moderate inhibition of dipeptidyl peptidase-4 (DPP4). Based on in silico docking studies, all isolates (1, 2, and 3) exhibit binding affinities of -8.7, -9.5, and -8.5 kcal/mol, respectively against α-glucosidase enzyme (PDB: 3AJ7). They are stabilized within the α-glucosidase active site through hydrogen bonds, pi interactions, and hydrophobic interactions. This study provides scientific support for the traditional use of Morus mesozygia in the treatment of diabetes as well as adding to the repository of α-glucosidase inhibitory agents.
Collapse
Affiliation(s)
- Katherine Olabanjo Olufolabo
- Department of Pharmacognosy, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | | | - Emmanuel Ayodeji Agbebi
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Bernd Schmidt
- Institut für Chemie, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
5
|
Zhou H, Yang T, Lu Z, He X, Quan J, Liu S, Chen Y, Wu K, Cao H, Liu J, Yu L. Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway. Chin Med 2023; 18:35. [PMID: 37013552 PMCID: PMC10068703 DOI: 10.1186/s13020-023-00739-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Licorice (Glycyrrhiza uralensis Fisch.), a well-known traditional medicine, is traditionally used for the treatment of respiratory disorders, such as cough, sore throat, asthma and bronchitis. We aim to investigate the effects of liquiritin (LQ), the main bioactive compound in licorice against acute lung injury (ALI) and explore the potential mechanism. METHODS Lipopolysaccharide (LPS) was used to induce inflammation in RAW264.7 cells and zebrafish. Intratracheal instillation of 3 mg/kg of LPS was used for induction an ALI mice model. The concentrations of IL-6 and TNF-α were tested using the enzyme linked immunosorbent assay. Western blot analysis was used to detect the expression of JNK/Nur77/c-Jun related proteins. Protein levels in bronchoalveolar lavage fluid (BALF) was measured by BCA protein assay. The effect of JNK on Nur77 transcriptional activity was determined by luciferase reporter assay, while electrophoretic mobility shift assay was used to examine the c-Jun DNA binding activity. RESULTS LQ has significant anti-inflammatory effects in zebrafish and RAW264.7 cells. LQ inhibited the expression levels of p-JNK (Thr183/Tyr185), p-Nur77 (Ser351) and p-c-Jun (Ser63), while elevated the Nur77 expression level. Inhibition of JNK by a specific inhibitor or small interfering RNA enhanced the regulatory effect of LQ on Nur77/c-Jun, while JNK agonist abrogated LQ-mediated effects. Moreover, Nur77-luciferase reporter activity was suppressed after JNK overexpression. The effects of LQ on the expression level of c-Jun and the binding activity of c-Jun with DNA were attenuated after Nur77 siRNA treatment. LQ significantly ameliorated LPS-induced ALI with the reduction of lung water content and BALF protein content, the downregulation of TNF-α and IL-6 levels in lung BALF and the suppression of JNK/Nur77/c-Jun signaling, which can be reversed by a specific JNK agonist. CONCLUSION Our results indicated that LQ exerts significant protective effects against LPS-induced inflammation both in vivo and in vitro via suppressing the activation of JNK, and consequently inhibiting the Nur77/c-Jun signaling pathway. Our study suggests that LQ may be a potential therapeutic candidate for ALI and inflammatory disorders.
Collapse
Affiliation(s)
- Hongling Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingyu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shanhong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuyao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Kangtai Wu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
6
|
Concise synthesis of moracin M using Appel mediated dehydration of a bioinspired endoperoxide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhao X, Qiu Z, Ma Z, Liu Y, Ren X, Yu X, Sun L, Wang M. Comprehensive Quality Evaluation of the Root Bark of Morus alba L. Based on High-Performance Liquid Chromatography Fingerprinting and Chemometric Analyses. Chem Biodivers 2022; 19:e202200362. [PMID: 35924830 DOI: 10.1002/cbdv.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022]
Abstract
The quality of the root bark of Morus alba L. (SBP) herbs currently circulating in the market is variable. In order to ensure clinical effectiveness, a high-performance liquid chromatography (HPLC) fingerprinting method combined with chemical pattern recognition should be established to control the quality of SBP herbs. The differences of 23 batches of SBP were analyzed by exploratory cluster analysis based on shared fingerprint peak data, and the results indicated that the processing method to remove the cork layer from SBP materials is an important influencing factor on SBP quality. Principal component analysis indicated that SBP samples with the cork layer removed can be clearly distinguished from samples without cork layer removal. The potential chemical markers (kuwanon G, morusin and oxyresveratrol) were screened by partial least squares discriminant analysis. Finally, the contents of the main components were determined, indicating that the processing method of SBP materials can affect content of bioactive ingredients and that cork layer removal leads to a more uniform chemometric profile. The HPLC-based chemometrics approach described here will support the development of quality standards in SBP products.
Collapse
Affiliation(s)
- Xiaoran Zhao
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, School of Chinese Materia Medica, Tianjin, CHINA
| | - Ziying Qiu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, No. 10, Poyang Lake Road, Jinghai District, Tianjin, CHINA
| | - Zicheng Ma
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, No. 10, Poyang Lake Road, Jinghai District, Tianjin, CHINA
| | - Yanan Liu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, No. 10, Poyang Lake Road, Jinghai District, Tianjin, CHINA
| | - Xiaoliang Ren
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, No. 10, Poyang Lake Road, Jinghai District, Tianjin, CHINA
| | - Xiaohua Yu
- Tianjin traditional Chinese medicine decoction piece factory Co., Ltd, Tianjin traditional Chinese medicine decoction piece factory Co., Ltd, No. 278, Xiqing Road, Xiqing District, Tianijn, CHINA
| | - Lili Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, Tianjin, 301617, Tianjin, CHINA
| | - Meng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, No. 10, Poyang Lake Road, Jinghai District, Tianjin, CHINA
| |
Collapse
|
8
|
Wu YC, Hsu SP, Hu MC, Lan YT, Yeh ETH, Yang FM. PEP-sNASP Peptide Alleviates LPS-Induced Acute Lung Injury Through the TLR4/TRAF6 Axis. Front Med (Lausanne) 2022; 9:832713. [PMID: 35386914 PMCID: PMC8977741 DOI: 10.3389/fmed.2022.832713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease associated with macrophages. Somatic nuclear autoantigenic sperm protein (sNASP) is a negative regulator of Toll-like receptor (TLR) signaling that targets tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) in macrophages, which is required to maintain homeostasis of the innate immune response. In the present study, we generated a cell permeable PEP-sNASP peptide using the sNASP protein N-terminal domain, and examined its potential therapeutic effect in a mouse model of ALI induced by the intranasal administration of lipopolysaccharide (LPS) and elucidated the underlying molecular mechanisms in RAW 264.7 cells. In vivo, PEP-sNASP peptide treatment markedly ameliorated pathological injury, reduced the wet/dry (W/D) weight ratio of the lungs and the production of proinflammatory cytokines (interleukin (IL)-1β, IL-6, and TNF-α). In vitro, we demonstrated that when the PEP-sNASP peptide was transduced into RAW 264.7 cells, it bound to TRAF6, which markedly decreased LPS-induced proinflammatory cytokines by inhibiting TRAF6 autoubiquitination, nuclear factor (NF)-κB activation, reactive oxygen species (ROS) and cellular nitric oxide (NO) levels. Furthermore, the PEP-sNASP peptide also inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. Our results therefore suggest that the PEP-sNASP may provide a potential protein therapy against oxidative stress and pulmonary inflammation via selective TRAF6 signaling.
Collapse
Affiliation(s)
- Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ting Lan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Edward T H Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AK, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Xie P, Yan LJ, Zhou HL, Cao HH, Zheng YR, Lu ZB, Yang HY, Ma JM, Chen YY, Huo C, Tian C, Liu JS, Yu LZ. Emodin Protects Against Lipopolysaccharide-Induced Acute Lung Injury via the JNK/Nur77/c-Jun Signaling Pathway. Front Pharmacol 2022; 13:717271. [PMID: 35370650 PMCID: PMC8968870 DOI: 10.3389/fphar.2022.717271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Acute lung injury (ALI) is a serious inflammatory disease with clinical manifestations of hypoxemia and respiratory failure. Presently, there is no effective treatment of ALI. Although emodin from Rheum palmatum L. exerts anti-ALI properties, the underlying mechanisms have not been fully explored. Purpose: This study aimed to investigate the therapeutic effect and mechanism of emodin on LPS-induced ALI in mice. Methods: RAW264.7 cells and zebrafish larvae were stimulated by LPS to establish inflammatory models. The anti-inflammatory effect of emodin was assessed by ELISA, flow cytometric analysis, and survival analysis. In vitro mechanisms were explored by using Western blotting, luciferase assay, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) approach. The acute lung injury model in mice was established by the intratracheal administration of LPS, and the underlying mechanisms were assessed by detecting changes in histopathological and inflammatory markers and Western blotting in lung tissues. Results: Emodin inhibited the inflammatory factor production and oxidative stress in RAW264.7 cells, and prolonged the survival of zebrafish larvae after LPS stimulation. Emodin suppressed the expression levels of phosphorylated JNK at Thr183/tyr182 and phosphorylated Nur77 at Ser351 and c-Jun, and increased the expression level of Nur77 in LPS-stimulated RAW264.7 cells, while these regulatory effects of emodin on Nur77/c-Jun were counteracted by JNK activators. The overexpression of JNK dampened the emodin-mediated increase in Nur77 luciferase activity and Nur77 expression. Moreover, the inhibitory effect of emodin on c-Jun can be attenuated by Nur77 siRNA. Furthermore, emodin alleviated LPS-induced ALI in mice through the regulation of the JNK/Nur77/c-Jun pathway. Conclusions: Emodin protects against LPS-induced ALI through regulation on JNK/Nur77/c-Jun signaling. Our results indicate the potential of emodin in the treatment of ALI.
Collapse
Affiliation(s)
- Pei Xie
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Li-Jun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hong-Ling Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Yuan-Ru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Hua-Yi Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Jia-Mei Ma
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Yu-Yao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Chuying Huo
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
| |
Collapse
|
10
|
Kuwanon T and Sanggenon a Isolated from Morus alba Exert Anti-Inflammatory Effects by Regulating NF-κB and HO-1/Nrf2 Signaling Pathways in BV2 and RAW264.7 Cells. Molecules 2021; 26:molecules26247642. [PMID: 34946724 PMCID: PMC8708433 DOI: 10.3390/molecules26247642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
We previously investigated the methanolic extract of Morus alba bark and characterized 11 compounds from the extract: kuwanon G (1), kuwanon E (2), kuwanon T (3), sanggenon A (4), sanggenon M (5), sanggenol A (6), mulberofuran B (7), mulberofuran G (8), moracin M (9), moracin O (10), and norartocarpanone (11). Herein, we investigated the anti-inflammatory effects of these compounds on microglial cells (BV2) and macrophages (RAW264.7). Among them, 3 and 4 markedly inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide in these cells, suggesting the anti-inflammatory properties of these two compounds. These compounds inhibited the production of prostaglandin E2, interleukin-6, and tumor necrosis factor-α, and the expression of inducible nitric oxide synthase and cyclooxygenase-2 following LPS stimulation. Pretreatment with 3 and 4 inhibited the activation of the nuclear factor kappa B signaling pathway in both cell types. The compounds also induced the expression of heme oxygenase (HO)-1 through the activation of nuclear factor erythroid 2-related factor 2. Suppressing the activity of HO-1 reversed the anti-inflammatory effects caused by pretreatment with 3 and 4, suggesting that the anti-inflammatory effects were regulated by HO-1. Taken together, 3 and 4 are potential candidates for developing therapeutic and preventive agents for inflammatory diseases.
Collapse
|
11
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
12
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
14
|
Parise A, De Simone BC, Marino T, Toscano M, Russo N. Quantum Mechanical Predictions of the Antioxidant Capability of Moracin C Isomers. Front Chem 2021; 9:666647. [PMID: 33968905 PMCID: PMC8097241 DOI: 10.3389/fchem.2021.666647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The antioxidant capability of moracin C and iso-moracin C isomers against the OOH free radical was studied by applying density functional theory (DFT) and choosing the M05-2X exchange-correlation functional coupled with the all electron basis set, 6-311++G(d,p), for computations. Different reaction mechanisms [hydrogen atom transfer (HAT), single electron transfer (SET), and radical adduct formation (RAF)] were taken into account when considering water- and lipid-like environments. Rate constants were obtained by applying the conventional transition state theory (TST). The results show that, in water, scavenging activity mainly occurs through a radical addition mechanism for both isomers, while, in the lipid-like environment, the radical addition process is favored for iso-moracin C, while, redox- and non-redox-type reactions can equally occur for moracin C. The values of pKa relative to the deprotonation paths at physiological pH were predicted in aqueous solution.
Collapse
Affiliation(s)
- Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, France
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| |
Collapse
|
15
|
|
16
|
Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway. Mol Cell Biochem 2021; 476:1979-1994. [PMID: 33511552 DOI: 10.1007/s11010-021-04052-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
The endogenous repair failure of degenerated intervertebral disk (IVD) is highly related to the exhaustion of nucleus pulposus stem cells (NPSCs). Excessive oxidative stress could induce apoptosis and senescence of NPSCs, thus, declining the quantity and quality of NPSCs. Heat shock protein 70 (HSP70) is a family of cytoprotective and antioxidative proteins. However, there is no report on the protective effects of HSP70 on oxidative stress-induced NPSC impairments and underlying mechanisms. In the present study, we treated NPSCs with tert-butyl hydroperoxide (t-BHP) in vitro to simulate an oxidative stress condition. HSP70 inducer TRC051384 was used to evaluate the cytoprotective effects of HSP70. The results suggested that HSP70 impeded t-BHP-mediated cell viability loss and protected the ultrastructure of NPSCs. Moreover, t-BHP could induce mitochondrial apoptosis and p53/p21-mediated senescence of NPSCs, both of which were significantly inhibited in HSP70 activation groups. Excessive oxidative stress and mitochondrial dysfunction reinforced each other and contributed to the cellular damage processes. HSP70 decreased reactive oxygen species (ROS) production, rescued mitochondrial membrane potential (MMP) collapse, and blocked ATP depletion. Finally, our data showed that HSP70 downregulated the JNK/c-Jun pathway. Taken together, activation of HSP70 could protect against t-BHP-induced NPSC apoptosis and senescence, thus, improving the quantity and quality of NPSCs. Therefore, HSP70 may be a promising therapeutic target for IVD degeneration.
Collapse
|
17
|
Vo QV, Hoa NT. The radical scavenging activity of moracins: theoretical insights. RSC Adv 2020; 10:36843-36848. [PMID: 35517966 PMCID: PMC9057055 DOI: 10.1039/d0ra06555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Moracins are natural products that have been isolated from different plants such as Artocarpus heterophyllus, Cassia fistula, Morus alba, and Morus mesozygia. Studies showed that moracins may have various advantageous physiological effects such as anticancer, anti-inflammatory, anticholinesterase and particularly antioxidant activities. Most of these bioactivities have not been studied systematically. In this study, the radical scavenging of a typical moracin (moracin M, MM) against HO˙ and HOO˙ radicals was evaluated by thermodynamic and kinetic calculations in the gas phase as well as in water and pentyl ethanoate solvents. It was found that the overall rate constants for the HO˙ radical scavenging in the gas phase and the physiological environments are in the range of 1011 to 1010 M-1 s-1, respectively. For the HOO˙ + MM reaction the rate constants are 4.10 × 107 and 3.80 × 104 M-1 s-1 in the polar and lipid media, respectively. It is important to notice that the single electron transfer pathway of the anion state (MM-O6'-) dominated the HOO˙ radical scavenging in the aqueous solution, whereas in lipid medium the neutral MM exerted its activity by the formal hydrogen transfer mechanism. The HOO˙ radical scavenging of MM is comparable to that of Trolox in lipid medium, whereas it is 315.4 times more active in the polar environment.
Collapse
Affiliation(s)
- Quan V Vo
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
- The University of Danang - University of Technology and Education 48 Cao Thang Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education 48 Cao Thang Danang 550000 Vietnam
| |
Collapse
|
18
|
Moracin attenuates LPS-induced inflammation in nucleus pulposus cells via Nrf2/HO-1 and NF-κB/TGF-β pathway. Biosci Rep 2020; 39:221156. [PMID: 31729530 PMCID: PMC6893166 DOI: 10.1042/bsr20191673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
The present study was designed to investigate the protective effect of moracin on primary culture of nucleus pulposus cells in intervertebral disc and explore the underlying mechanism. Moracin treatment significantly inhibited the LPS-induced inflammatory cytokine accumulation (IL-1β, IL-6 and TNF-α) in nucleus pulposus cells. And moracin also dramatically decreased MDA activity, and increased the levels of SOD and CAT induced by LPS challenge. Moreover, the expressions of Nrf-2 and HO-1 were decreased and the protein levels of p-NF-κBp65, p-IκBα, p-smad-3 and TGF-β were increased by LPS challenge, which were significantly reversed after moracin treatments. Moracin treatments also decreased the levels of matrix degradation enzymes (MMP-3, MMP-13) as indicated by RT-PCR analysis. However, Nrf-2 knockdown abolished these protective effects of moracin. Together, our results demonstrated the ability of moracin to antagonize LPS-mediated inflammation in primary culture of nucleus pulposus in intervertebral disc by partly regulating the Nrf2/HO-1 and NF-κB/TGF-β pathway in nucleus pulposus cells.
Collapse
|
19
|
Lee J, Mandava S, Ahn SH, Bae MA, So KS, Kwon KS, Kim HP. Potential Moracin M Prodrugs Strongly Attenuate Airway Inflammation In Vivo. Biomol Ther (Seoul) 2020; 28:344-353. [PMID: 32388942 PMCID: PMC7327141 DOI: 10.4062/biomolther.2019.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 11/05/2022] Open
Abstract
This study aims to develop new potential therapeutic moracin M prodrugs acting on lung inflammatory disorders. Potential moracin M prodrugs (KW01-KW07) were chemically synthesized to obtain potent orally active derivatives, and their pharmacological activities against lung inflammation were, for the first time, examined in vivo using lipopolysaccharide (LPS)-induced acute lung injury model. In addition, the metabolism of KW02 was also investigated using microsomal stability test and pharmacokinetic study in rats. When orally administered, some of these compounds (30 mg/kg) showed higher inhibitory action against LPSinduced lung inflammation in mice compared to moracin M. Of them, 2-(3,5-bis((dimethylcarbamoyl)oxy)phenyl)benzofuran-6-yl acetate (KW02) showed potent and dose-dependent inhibitory effect on the same animal model of lung inflammation at 1, 3, and 10 mg/kg. This compound at 10 mg/kg also significantly reduced IL-1β concentration in the bronchoalveolar lavage fluid of the inflamed-lungs. KW02 was rapidly metabolized to 5-(6-hydroxybenzofuran-2-yl)-1,3-phenylene bis(dimethylcarbamate) (KW06) and moracin M when it was incubated with rat serum and liver microsome as expected. When KW02 was administered to rats via intravenous or oral route, KW06 was detected in the serum as a metabolite. Thus, it is concluded that KW02 has potent inhibitory action against LPS-induced lung inflammation. It could behave as a potential prodrug of moracin M to effectively treat lung inflammatory disorders.
Collapse
Affiliation(s)
- Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myung-Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyung Soo So
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki Sun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
20
|
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
21
|
Wang T, Li X, Fan L, Chen B, Liu J, Tao Y, Wang X. Negative pressure wound therapy promoted wound healing by suppressing inflammation via down-regulating MAPK-JNK signaling pathway in diabetic foot patients. Diabetes Res Clin Pract 2019; 150:81-89. [PMID: 30825563 DOI: 10.1016/j.diabres.2019.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
AIMS Negative pressure wound therapy displayed significant clinical benefits in the healing of diabetic foot wounds. In the present study, we investigated the mechanism of regulation of MAPK-JNK (Mitogen-activated protein kinase- c-Jun N-terminal kinase) signaling pathway by negative pressure wound therapy on these wounds. METHODS Twenty-six type 2 diabetes patients with foot ulceration were randomly assigned to the two groups, thirteen treated with negative pressure wound therapy and the others treated with traditional debridement therapy. Skin samples were harvested and histologically and immunohistochemical analyzed in both groups. Immunofluorescence stain, Enzyme-linked immunosorbent assay and Western blotting were performed for inducible nitric oxide synthase, inter leukin-6, tumor necrosis factor-α, P-c-Jun N-terminal kinase and c-Jun N-terminal kinase. Real time-polymerase chain reaction was performed to evaluate expression of c-Jun N-terminal kinase, extracellular signal regulated kinase1/2 and p38. RESULTS Negative pressure wound therapy could effectively alleviate inflammatory reaction and reduce inter leukin-6 and inducible nitric oxide synthase production after 7 days treatment. The level of tumor necrosis factor-α, inter leukin-6 and P-c-Jun N-terminal kinase were significantly decreased. However, there was no statistical difference in messenger ribonucleic acid expression of p38, extracellular signal regulated kinase1 and 2. CONCLUSIONS Negative pressure wound therapy possibly suppress the wound inflammation by inhibiting inter leukin-6, tumor necrosis factor-α and inducible nitric oxide synthase in diabetic foot patients. This effect is maybe mediated at least in part by suppression of Mitogen-activated protein kinase- c-Jun N-terminal kinase signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China
| | - Longhua Fan
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China.
| | - Bin Chen
- Institute of Vascular Surgery, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianjun Liu
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China
| | - Yue Tao
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China
| | - Xiaojun Wang
- Department of Vascular Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Institute for Vascular Surgery, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wongwat T, Srihaphon K, Pitaksutheepong C, Boonyo W, Pitaksuteepong T. Suppression of inflammatory mediators and matrix metalloproteinase (MMP)-13 by Morus alba stem extract and oxyresveratrol in RAW 264.7 cells and C28/I2 human chondrocytes. J Tradit Complement Med 2019; 10:132-140. [PMID: 32257876 PMCID: PMC7109470 DOI: 10.1016/j.jtcme.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
This study aimed to investigate the effects of Morus alba stem extract (MSE) and oxyresveratrol on the suppression of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages and IL-1β-stimulated C28/I2 human chondrocyte cell line. The chondroprotective effect was also investigated using the chondrocyte cell line. First, MSE was prepared and analyzed for the amount of oxyresveratrol. The anti-inflammatory effects of MSE at various concentrations were evaluated through the inhibition of nitric oxide (NO), prostaglandin (PG)-E2 and cyclooxygenase (COX)-2 production. Oxyresveratrol at the equivalent amount found in the extract was investigated in the same manner. The chondroprotective effect was investigated through the suppression of MMP-13 production. The results showed that oxyresveratrol content in MSE was 15%. In RAW 264.7 cells, MSE (5-50 μg/mL) could inhibit the NO (24-30%) and PGE2 (11-82%) production. Oxyresveratrol at 0.75 and 7.5 μg/mL could suppress NO and also inhibited PGE2 but at only at high concentration. In the chondrocyte cell line, MSE at 5-100 μg/mL significantly decreased the PGE2 and COX-2 production by 44-93% and 17-65%, respectively. Again, oxyresveratrol at both concentrations could significantly inhibit PGE2 production by 50-92% but it inhibited COX-2 only at high concentration. In addition, MSE and oxyresveratrol was shown to significantly inhibit MMP-13 production by 14-57% and 16-56%, depending on their concentrations. The MSE demonstrates the potential to be used as an alternative treatment for reducing inflammation and preventing cartilage degradation. Its component, oxyresveratrol, may exert these effects to some extent.
Collapse
Affiliation(s)
- Thidarat Wongwat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
| | - Kanyarat Srihaphon
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
| | - Chetsadaporn Pitaksutheepong
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Worawan Boonyo
- Department of Pharmacy Technician, Sirindhorn College of Public Health, Wangthong, Phitsanulok, 65130, Thailand
| | - Tasana Pitaksuteepong
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
- Corresponding author.
| |
Collapse
|
23
|
Yimam M, Horm T, Wright L, Jiao P, Hong M, Brownell L, Jia Q. UP1306: A Composition Containing Standardized Extracts of Acacia catechu and Morus alba for Arthritis Management. Nutrients 2019; 11:E272. [PMID: 30691120 PMCID: PMC6413154 DOI: 10.3390/nu11020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is characterized by progressive articular cartilage degradation. Although there have been significant advances in OA management, to date, there are no effective treatment options to modify progression of the disease. We believe these unmet needs could be bridged by nutrients from natural products. Collagen induced arthritis in rats was developed and utilized to evaluate anti-inflammatory and cartilage protection activity of orally administered botanical composition, UP1306 (50 mg/kg) and Methotrexate (75 µg/kg) daily for three weeks. Objective arthritis severity markers, urine, synovial lavage, and serum were collected. At necropsy, the hock joint from each rat was collected for histopathology analysis. Urinary cartilage degradation marker (CTX-II), pro-inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6), and proteases (Matrix Metallopeptidase 3 (MMP3) and 13) were measured. Rats treated with UP1306 showed statistically significant improvements in arthritis severity markers, including uCTX-II (91.4% vs. collagen-induced arthritis (CIA)), serum IL-1β, TNF-α, and IL-6 levels as well as synovial MMP-13. The histopathology data were also well aligned with the severity score of arthritis for both UP1306 and Methotrexate. UP1306, a botanical composition that contains a standardized blend of extracts from the heartwood of Acacia catechu and the root bark of Morus alba, could potentially be considered as a dietary supplement product for the management of arthritis.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| | - Laura Wright
- Fred Hutch Cancer Research, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| | - Lidia Brownell
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite 400, Tacoma, WA 98405, USA.
| |
Collapse
|
24
|
|
25
|
Ding YH, Song YD, Wu YX, He HQ, Yu TH, Hu YD, Zhang DP, Jiang HC, Yu KK, Li XZ, Sun L, Qian F. Isoalantolactone suppresses LPS-induced inflammation by inhibiting TRAF6 ubiquitination and alleviates acute lung injury. Acta Pharmacol Sin 2019; 40:64-74. [PMID: 30013035 DOI: 10.1038/s41401-018-0061-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Isoalantolactone (IAL) is a sesquiterpene lactone extracted from roots of Inula helenium L and has shown anti-inflammatory effects. In this study we investigated the therapeutic effects of IAL on acute lung injury (ALI) and elucidated the mechanisms underlying its anti-inflammation potential in vitro and in vivo. Treatment with lipopolysaccharide (LPS, 100 ng/mL) drastically stimulated production of inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6 in mouse bone marrow-derived macrophages (BMDMs), which was dose-dependently suppressed by pretreatment with IAL (2.5, 5, 10, 20 μM). We further revealed that IAL suppressed LPS-induced NF-κB, ERK, and Akt activation. Moreover, the downregulation of non-degradable K63-linked polyubiquitination of TRAF6, an upstream transcription factor of NF-κB, contributed to the anti-inflammatory effects of IAL. ALI was induced in mice by intratracheal injection of LPS (5 mg/kg). Administration of IAL (20 mg/kg, i.p.) significantly suppressed pulmonary pathological changes, neutrophil infiltration, pulmonary permeability, and pro-inflammatory cytokine expression. Our results demonstrate that IAL is a potential therapeutic reagent against inflammation and ALI.
Collapse
|
26
|
Seong SH, Ha MT, Min BS, Jung HA, Choi JS. Moracin derivatives from Morus Radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci 2018; 210:20-28. [DOI: 10.1016/j.lfs.2018.08.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
|
27
|
Moracin M inhibits lipopolysaccharide-induced inflammatory responses in nucleus pulposus cells via regulating PI3K/Akt/mTOR phosphorylation. Int Immunopharmacol 2018; 58:80-86. [DOI: 10.1016/j.intimp.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
|
28
|
Kwon KS, Lee JH, So KS, Park BK, Lim H, Choi JS, Kim HP. Aurantio-obtusin, an anthraquinone from cassiae semen, ameliorates lung inflammatory responses. Phytother Res 2018; 32:1537-1545. [PMID: 29675883 DOI: 10.1002/ptr.6082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/04/2023]
Abstract
The purpose of the present study is to find the natural compound(s) having a therapeutic potential to treat lung inflammatory disorders. In our screening procedure, the methanol extract of the seeds of Cassia obtusifolia (cassiae semen) inhibited inducible nitric oxide synthase-catalyzed nitric oxide production in alveolar macrophages (MH-S). From the extract, 8 major anthraquinone derivatives were successfully isolated. They are chrysophanol, physcion, 2-hydroxy-emodin 1-methyl ether, obtusifolin, obtusin, aurantio-obtusin, chryso-obtusin, and gluco-obtusifolin, among which aurantio-obtusin (IC50 = 71.7 μM) showed significant inhibitory action on nitric oxide production from lipopolysaccharide-treated MH-S cells, mainly by downregulation of inducible nitric oxide synthase expression. This down-regulatory action of aurantio-obtusin was mediated at least in part via interrupting c-Jun N-terminal kinase/IκB kinase/nuclear transcription factor-κB pathways. Aurantio-obtusin also inhibited IL-6 production in IL-1β-treated lung epithelial cells, A549. Importantly, this compound (10 and 100 mg/kg) by oral administration attenuated lung inflammatory responses in a mouse model of lipopolysaccharide-induced acute lung injury. Therefore, it is for the first time found that aurantio-obtusin may have a therapeutic potential for treating lung inflammatory diseases.
Collapse
Affiliation(s)
- Ki Sun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyung Su So
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Byung Kyu Park
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, South Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| |
Collapse
|
29
|
Dong Y, Liu L, Shan X, Tang J, Xia B, Cheng X, Chen Y, Tao W. Pilose antler peptide attenuates LPS-induced inflammatory reaction. Int J Biol Macromol 2017; 108:272-276. [PMID: 29208559 DOI: 10.1016/j.ijbiomac.2017.11.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/15/2022]
Abstract
The present study was designed to study the effects of pilose antler peptide (PAP) on primary culture of nucleus pulposus cells in intervertebral disc. We demonstrated that PAP significantly inhibited lipopolysaccharides (LPS) induced over-production of inflammatory factors including interleukin-1β (IL-1β), tumor necrosis Factor-α (TNF-α) and interleukin-6 (IL-6) in nucleus pulposus cells. PAP also attenuated increase of malondialdehyde (MDA) and decrease of superoxide dismutase (SOD) induced by LPS challenge in a concentration-dependent manner. Moreover, the expression of the protein levels of mitogen-activated protein kinase (MAPK)/nuclear transcription factor-κB(NF-κB) were increased accompanying with the LPS challenge, which were significantly reversed after PAP treatment. Our results demonstrated the ability of PAP to antagonize LPS-mediated inflammation in primary culture of nucleus pulposus in intervertebral disc, suggesting a beneficial potential for its clinical application.
Collapse
Affiliation(s)
- Yu Dong
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xin Shan
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baomei Xia
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, 210023, China
| | - Xiaolan Cheng
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yanyan Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
30
|
Modulation of mitogen‑activated protein kinase attenuates sepsis‑induced acute lung injury in acute respiratory distress syndrome rats. Mol Med Rep 2017; 16:9652-9658. [PMID: 29039541 DOI: 10.3892/mmr.2017.7811] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Sepsis is the most important predisposing cause inducing acute respiratory distress syndrome (ARDS); however, the mechanism of sepsis leading to the development of ARDS remains to be elucidated. Suppression of the mitogen‑activated protein kinase (MAPK) signal by blocking the phosphorylation of Jun N‑terminal kinase (JNK) and p38 in lung tissues could alleviate acute lung injury induced by sepsis. MAPK signaling may have a crucial role in development of the sepsis‑induced acute lung injury. The specific inhibitors of JNK and p38 MAPK, SP600125 and SB203580, were administrated by intragastric injection 4 h before induction of ARDS after cecal ligation and puncture (CLP). Rats were sacrificed at 1, 6 or 24 h after CLP challenge. The histological evaluation, lung water content, and biochemical analysis were performed. The results revealed that the JNK and p38 MAPK inhibitor improved lung permeability, attenuated system inflammation, further alleviated the lung injury induced by sepsis. In conclusion, JNK and p38 MAPK signaling are essential for the development of ARDS following sepsis. Further studies are needed to illuminate the detailed mechanisms of JNK and p38 MAPK signaling in sepsis‑induced ARDS.
Collapse
|
31
|
A Botanical Composition Mitigates Cartilage Degradations and Pain Sensitivity in Osteoarthritis Disease Model. J Med Food 2017; 20:568-576. [DOI: 10.1089/jmf.2016.0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
Li M, Wu X, Wang X, Shen T, Ren D. Two novel compounds from the root bark of Morus alba L. Nat Prod Res 2017; 32:36-42. [DOI: 10.1080/14786419.2017.1327862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ming Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xuewei Wu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Dongmei Ren
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
33
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
34
|
Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-κB signaling pathways. Biomed Pharmacother 2016; 82:489-97. [PMID: 27470389 DOI: 10.1016/j.biopha.2016.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
|