1
|
Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol 2021; 192:114669. [PMID: 34224692 DOI: 10.1016/j.bcp.2021.114669] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid peptide hormone that is secreted by the parathyroid gland. It has different administration modes in bone tissue through which it promotes bone formation (intermittent administration) and bone resorption (continuous administration) and has great potential for application in sbone defect repair. PTH regulates bone metabolism by binding to PTH1R. PTH plays an osteogenic role by acting directly on mesenchymal stem cells, cells with an osteoblastic lineage, osteocytes, and T cells. It also participates as an osteoclast by indirectly acting on osteoclast precursor cells and osteoclasts and directly acting on T cells. In these cells, PTH activates the Wnt signaling, cAMP/PKA, cAMP/PKC, and RANKL/RANK/OPG pathways and other signaling pathways. Although PTH(1-34), also known as teriparatide, has been used clinically, it still has some disadvantages. Developing improved PTH-related peptides is a potential solution to teriparatide's shortcomings. The action mechanism of these PTH-related peptides is not exactly the same as that of PTH. Thus, the mechanisms of PTH and PTH-related peptides in bone metabolism were reviewed in this paper.
Collapse
|
2
|
Wu X, Xie CQ, Zhu QQ, Wang MY, Sun B, Huang YP, Shen C, An MF, Zhao YL, Wang XJ, Sheng J. Green tea ( Camellia sinensis) aqueous extract alleviates postmenopausal osteoporosis in ovariectomized rats and prevents RANKL-induced osteoclastogenesis in vitro. Food Nutr Res 2018; 62:1478. [PMID: 30349445 PMCID: PMC6190732 DOI: 10.29219/fnr.v62.1478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Green tea (Camelliasinensis [L.] Kuntze) belongs to the plant family Theaceae and is mainly distributed in East Asia, the Indian subcontinent and Southeast Asia. This plant has been proven to be beneficial to human health, and green tea is the second most consumed beverage in the world after water. However, until now, the effect of green tea aqueous extract (GTE) upon postmenopausal osteoporosis has remained unclear. In this study, we investigated the therapeutic effects of GTE on estrogen deficiency-induced osteoporosis and explored the possible mechanisms in vivo and in vitro. Materials and methods Ovariectomized (OVX) female rats were orally administered with GTE at doses of 60, 120, and 370 mg kg−1 for 13 consecutive weeks. The biochemical parameters, bone gla protein, alkaline phosphatase, acid phosphatase, estrogen, interleukin-1β, and interleukin-6 in blood samples were detected, and histological change in bones was analyzed by hematoxylin and eosin staining. Meanwhile, the mechanisms of GTE on osteoclast formation were explored in RAW 264.7 cells induced by receptor activation of the nuclear factor kappa B ligand (RANKL). Results The results showed that GTE could increase bone mass and inhibit trabecular bone loss in OVX rats. Furthermore, real-time quantitative reverse transcription polymerase chain reaction analysis from in vitro experiments also showed that GTE reduced the mRNA expression of osteoclast-associated genes such as cathepsin K (cath-K), c-Fos, matrix metalloproteinase 9, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and tartrate-resistant acid phosphatase. In addition, GTE caused a reduction in the protein levels of NFATc1, c-Fos, c-src and cath-K. Conclusion Evidence from both animal models and in vitro experiments suggested that GTE might effectively ameliorate the symptoms of osteoporosis in OVX rats and inhibit RANKL-induced osteoclast-specific gene and protein expression.
Collapse
Affiliation(s)
- Xin Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chuan-Qi Xie
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiang-Qiang Zhu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bin Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan-Ping Huang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
3
|
Liang Q, Lv M, Zhang X, Hu J, Wu Y, Huang Y, Wang X, Sheng J. Effect of Black Tea Extract and Thearubigins on Osteoporosis in Rats and Osteoclast Formation in vitro. Front Physiol 2018; 9:1225. [PMID: 30233402 PMCID: PMC6129951 DOI: 10.3389/fphys.2018.01225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Background: Osteoporosis is a major health problem that is closely related to substantial morbidity, mortality and decline in life quality for the aging population. Although previous studies and epidemiological evidence have demonstrated an association between black tea consumption and the prevention of bone loss, the underlying mechanism remains unclear. So, the effect of black tea extract (BTE) and thearubigins (TRs) on osteoporosis in rats and osteoclast formation in vitro were investigated. Methods:In vivo, ovariectomized (OVX) rats were used to establish osteoporosis models. To validate the model and study the effects of BTE and TRs on osteoporosis, the female Wistar rats were divided into a sham-operated group and five OVX groups including model, Xian-Ling-Gu-Bao (XLGB) (as a positive control), BTE, TRs low-dose, and TRs high-dose group. The rats in the four treatment groups were given the corresponding test sample for 12 weeks. Then, the body weight, femur indices, and serum biomarkers were examined and analyzed. In vitro, RAW264.7 murine macrophages were used as model of osteoclast formation. The effects of BTE and TRs on osteoclasts formation and the specific genes and protein levels of osteoclasts were determined. Results: Although there was no significant effect on the OVX-induced body weight gain by BTE or TRs, the levels of maximum bending force, cortical bone thickness and biomarker of bone resorption (acid phosphatase) can be significantly ameliorated by BTE or TRs in OVX rats. Furthermore, both of BTE and TRs can inhibit the osteoclastogenesis and diminish the expression levels of the related genes and proteins.
Collapse
Affiliation(s)
- Qingqing Liang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming Lv
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaojuan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Hu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Ying Wu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| |
Collapse
|
4
|
Kim HK, Lee SH, Lee BY, Kim SJ, Sung CY, Jang NK, Kim JD, Jeong DH, Ryu HY, Lee S. A comparative study of dissolving hyaluronic acid microneedles with trehalose and poly(vinyl pyrrolidone) for efficient peptide drug delivery. Biomater Sci 2018; 6:2566-2570. [DOI: 10.1039/c8bm00768c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the role of the additives trehalose and poly(vinyl pyrrolidone) in the physical and pharmacokinetic properties of peptide drug incorporated microneedles.
Collapse
Affiliation(s)
| | - Soo Hyeon Lee
- Department of Chemistry
- KAIST
- Daejeon
- Republic of Korea
| | | | | | | | | | | | | | - Hyeon Yeol Ryu
- General toxicity evaluation center
- Korea conformity laboratories (KCL) 8
- Incheon
- Republic of Korea
| | - Somin Lee
- General toxicity evaluation center
- Korea conformity laboratories (KCL) 8
- Incheon
- Republic of Korea
| |
Collapse
|
5
|
Sittadjody S, Saul JM, McQuilling JP, Joo S, Register TC, Yoo JJ, Atala A, Opara EC. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat Commun 2017; 8:1858. [PMID: 29208899 PMCID: PMC5717171 DOI: 10.1038/s41467-017-01851-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/20/2017] [Indexed: 01/07/2023] Open
Abstract
Safe clinical hormone replacement (HR) will likely become increasingly important in the growing populations of aged women and cancer patients undergoing treatments that ablate the ovaries. Cell-based HRT (cHRT) is an alternative approach that may allow certain physiological outcomes to be achieved with lower circulating hormone levels than pharmacological means due to participation of cells in the hypothalamus-pituitary-ovary feedback control loop. Here we describe the in vivo performance of 3D bioengineered ovarian constructs that recapitulate native cell-cell interactions between ovarian granulosa and theca cells as an approach to cHRT. The constructs are fabricated using either Ca++ or Sr++ to crosslink alginate. Following implantation in ovariectomized (ovx) rats, the Sr++-cross-linked constructs achieve stable secretion of hormones during 90 days of study. Further, we show these constructs with isogeneic cells to be effective in ameliorating adverse effects of hormone deficiency, including bone health, uterine health, and body composition in this rat model.
Collapse
Affiliation(s)
- Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA.
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
6
|
Liu T, Ding S, Yin D, Cuan X, Xie C, Xu H, Wang X, Sheng J. Pu-erh Tea Extract Ameliorates Ovariectomy-Induced Osteoporosis in Rats and Suppresses Osteoclastogenesis In Vitro. Front Pharmacol 2017; 8:324. [PMID: 28620304 PMCID: PMC5450042 DOI: 10.3389/fphar.2017.00324] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
Background and Objective: Tea drinking is associated with positive effects on bone health and may protect against osteoporosis, especially in elderly women. Pu-erh tea has many beneficial effects on human health; however, whether Pu-erh tea has anti-osteoporotic potential remains unclear. Thus, we investigated the effects of Pu-erh tea extract (PTE) on ovariectomy-induced osteoporosis in rats and on osteoclastogenesis in vitro. Methods: Female Wistar rats were divided into six groups: the sham, model, and Xian-Ling-Gu-Bao capsule (XLGB) groups, and the low-, medium-, and high-dose PTE groups. Ovariectomized (OVX) rats were used as an animal model of osteoporosis. The animals were intragastrically administered distilled water, XLGB, or different concentrations of PTE for 13 weeks. Body weight, blood biochemical indicators, relative organ coefficients, femoral bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were examined and analyzed. Additionally, the in vitro effects of PTE on osteoclastic activities were investigated using the RAW 264.7 cell line as an osteoclast differentiation model. The effects of PTE on osteoclast differentiation and the expression of osteoclast-specific genes and proteins were determined. Results: PTE reduced OVX-induced body weight gain after 6 weeks of treatment, and the high-dose exerted a significant effect. High-dose PTE significantly ameliorated OVX-induced estradiol (E2) deficiency. PTE treatment maintained calcium and phosphorus homeostasis and improved other blood biochemical parameters to various degrees. In addition, PTE treatment improved organ coefficients of the femur, uterus, and vagina and improved femoral BMD and bone biomechanical properties. PTE treatment strikingly ameliorated bone microarchitecture. Moreover, in the in vitro studies, osteoclast differentiation using the differentiation cell model was significantly inhibited by PTE without cytotoxic effects. Additionally, PTE efficaciously suppressed the expression of key osteoclast-specific genes and proteins. Conclusion: PTE can ameliorate ovariectomy-induced osteoporosis in rats and suppress osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Titi Liu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Shihua Ding
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Dan Yin
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Xiangdan Cuan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Chuanqi Xie
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Huanhuan Xu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Food Science and Technology, Yunnan Agricultural UniversityKunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,College of Longrun Pu-erh Tea, Yunnan Agricultural UniversityKunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanKunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming, China.,Tea Research Center of YunnanKunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanKunming, China
| |
Collapse
|