1
|
Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells 2025; 14:487. [PMID: 40214441 PMCID: PMC11988158 DOI: 10.3390/cells14070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic pain is a widespread global health problem with profound socioeconomic implications, affecting millions of people of all ages. Glial cells (GCs) in pain pathways play essential roles in the processing of pain signals. Dysregulation of GC activity contributes to chronic pain states, making them targets for therapeutic interventions. Non-pharmacological approaches, such as exercise, are strongly recommended for effective pain management. This review examines the link between exercise, regular physical activity (PA), and glial cell-mediated pain processing, highlighting its potential as a strategy for managing chronic pain. Exercise not only improves overall health and quality of life but also influences the function of GCs. Recent research highlights the ability of exercise to mitigate neuroinflammatory responses and modulate the activity of GCs by reducing the activation of microglia and astrocytes, as well as modulating the expression biomarkers, thereby attenuating pain hypersensitivity. Here, we summarize new insights into the role of exercise as a non-pharmacological intervention for the relief of chronic pain.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
2
|
Zajączkowska R, Pawlik K, Ciapała K, Piotrowska A, Ciechanowska A, Rojewska E, Kocot-Kępska M, Makuch W, Wordliczek J, Mika J. Mirogabalin Decreases Pain-like Behaviors by Inhibiting the Microglial/Macrophage Activation, p38MAPK Signaling, and Pronociceptive CCL2 and CCL5 Release in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1023. [PMID: 37513935 PMCID: PMC10384153 DOI: 10.3390/ph16071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a specific ligand for the α2σ-1 and α2σ-2 subunits of voltage-gated calcium channels. In the present study, we compared the analgesic effect of pregabalin and mirogabalin in a neuropathic pain chronic constriction injury (CCI) of the sciatic nerve in a mouse model. The main purpose of our study was to determine the effectiveness of mirogabalin administered both once and repeatedly and to explain how the drug influences highly activated cells at the spinal cord level in neuropathy. We also sought to understand whether mirogabalin modulates the selected intracellular pathways (p38MAPK, ERK, JNK) and chemokines (CCL2, CCL5) important for nociceptive transmission, which is crucial information from a clinical perspective. First, our study provides evidence that a single mirogabalin administration diminishes tactile hypersensitivity more effectively than pregabalin. Second, research shows that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This study reports that repeated intraperitoneally (i.p.) mirogabalin administration strongly prevents spinal microglia/macrophage activation evoked by nerve injury, slightly suppresses astroglia and neutrophil infiltration, and reduces the p38MAPK levels associated with neuropathic pain, as measured on Day 7. Moreover, mirogabalin strongly diminished the levels of the pronociceptive chemokines CCL2 and CCL5. Our results indicate that mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
3
|
Alotaibi G, Khan A, Ronan PJ, Lutfy K, Rahman S. Glial Glutamate Transporter Modulation Prevents Development of Complete Freund's Adjuvant-Induced Hyperalgesia and Allodynia in Mice. Brain Sci 2023; 13:807. [PMID: 37239279 PMCID: PMC10216248 DOI: 10.3390/brainsci13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete Freund's adjuvant (CFA) in a mouse model of inflammatory pain. Furthermore, the effects of LDN-212320 on the protein expression of glial markers, such as ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation molecule 11b (CD11b), mitogen-activated protein kinases (p38), astroglial GLT-1, and connexin 43 (CX43), were measured in the hippocampus and ACC following CFA injection using the Western blot analysis and immunofluorescence assay. The effects of LDN-212320 on the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus and ACC were also assessed using an enzyme-linked immunosorbent assay. Pretreatment with LDN-212320 (20 mg/kg) significantly reduced the CFA-induced tactile allodynia and thermal hyperalgesia. The anti-hyperalgesic and anti-allodynic effects of LDN-212320 were reversed by the GLT-1 antagonist DHK (10 mg/kg). Pretreatment with LDN-212320 significantly reduced CFA-induced microglial Iba1, CD11b, and p38 expression in the hippocampus and ACC. LDN-212320 markedly modulated astroglial GLT-1, CX43, and, IL-1β expression in the hippocampus and ACC. Overall, these results suggest that LDN-212320 prevents CFA-induced allodynia and hyperalgesia by upregulating astroglial GLT-1 and CX43 expression and decreasing microglial activation in the hippocampus and ACC. Therefore, LDN-212320 could be developed as a novel therapeutic drug candidate for chronic inflammatory pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Amna Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Patrick J. Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| |
Collapse
|
4
|
Russo M, Graham B, Santarelli DM. Gabapentin-Friend or foe? Pain Pract 2023; 23:63-69. [PMID: 36300903 PMCID: PMC10092611 DOI: 10.1111/papr.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gabapentin is a recommended first-line agent for treating neuropathic pain; however, its efficacy rate is reportedly low, and the risk of adverse events is high. A plausible explanation for this lies with its wide range of actions, the entirety of which have yet to be fully elucidated. METHODS A review of the literature was conducted on gabapentin's known and proposed analgesic mechanisms of action, as well as potentially opposing or detrimental actions. RESULTS Gabapentin's classical analgesic mechanisms involve direct attenuation of excitatory neurotransmission in the spinal cord via inhibition of neuronal ion channels, while indirect mechanisms include descending inhibition and block of injury-evoked synaptogenesis. Glial effects have also been reported; however, whether they are neuroprotective or detrimental is unknown. Furthermore, data from animal models do not reflect clinical outcomes. CONCLUSIONS Gabapentin's clinical use should be reconsidered according to the net effects of its numerous assumed actions, including the tripartite synapse and oligodendrocyte effects. Whether it is doing more harm than good, especially in the scenarios of incomplete or loss of response, warrants consideration when prescribing gabapentin.
Collapse
Affiliation(s)
- Marc Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia.,Genesis Research Services, Broadmeadow, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Graham
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | | |
Collapse
|
5
|
Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022; 17:6723-6758. [PMID: 36600878 PMCID: PMC9805954 DOI: 10.2147/ijn.s362144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/05/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
Collapse
Affiliation(s)
- Shin Yee Lee
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Soon Yong Thow
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Shalimar Abdullah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Min Hwei Ng
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Nor Hazla Mohamed Haflah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur,Correspondence: Nor Hazla Mohamed Haflah, Department of Orthopedic & Traumatology’s Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Tel +6012-3031316, Email
| |
Collapse
|
6
|
Mirogabalin Decreases Pain-like Behaviours and Improves Opioid and Ketamine Antinociception in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2022; 15:ph15010088. [PMID: 35056145 PMCID: PMC8780738 DOI: 10.3390/ph15010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain remains a difficult clinical challenge due to its diverse aetiology and complex pathomechanisms, which are yet to be fully understood. Despite the variety of available therapies, many patients suffer from ineffective pain relief; hence, the search for more efficacious treatments continues. The new gabapentinoid, mirogabalin has recently been approved for clinical use. Although its main mechanism of action occurs at the α2σ-1 and α2σ-2 subunits of calcium channels and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level has not been clarified, which is crucial information from a clinical perspective. The findings of our study suggest that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This is the first study to report that mirogabalin enhances the mRNA expression of spinal antinociceptive factors, such as IL-10 and IL-18BP, and reduces the concentration of the pronociceptive substance P. Importantly, mirogabalin improves the morphine-, buprenorphine-, oxycodone-, and ketamine-induced antinociceptive effects in a neuropathic pain model. Our findings support the hypothesis that enhancing opioid and ketamine analgesia by combining these drugs with mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
|
7
|
Kim SI, Shin J, Tran Q, Park H, Kwon HH, Shin N, Hwang JA, Shin HJ, Lee J, Lee WH, Lee SY, Kim DW. Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater Sci 2021; 9:6295-6307. [PMID: 34378557 DOI: 10.1039/d1bm00486g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Duloxetine (DLX) is a selective serotonin and noradrenaline reuptake inhibitor (SNRI) used for the treatment of pain, but it has been reported to show side effects in 10-20% of patients. Its analgesic efficacy in central pain is putatively related to its influence on descending inhibitory neuronal pathways. However, DLX can also affect the activation of microglia. This study was performed to investigate whether PLGA nanoparticles (NPs), which are expected to enhance targeting to microglia, can improve the analgesic efficacy and limit the side effects of DLX. PLGA NPs encapsulating a low dose of DLX (DLX NPs) were synthesized and characterized and their localization was determined. The analgesic and anti-inflammatory effects of DLX NPs were evaluated in a spinal nerve ligation (SNL)-induced neuropathic pain model. The analgesic effect of DLX lasted for only a few hours and disappeared within 1 day. However, DLX NPs alleviated mechanical allodynia, and the effect was maintained for 1 week. DLX NPs were localized to the spinal microglia and suppressed microglial activation, phosphorylation of p38/NF-κB-mediated pathways and the production of inflammatory cytokines in the spinal dorsal horn of SNL rats. We demonstrated that DLX NPs can provide a prolonged analgesic effect by enhanced targeting of microglia. Our observations imply that DLX delivery through nanoparticle encapsulation allows drug repositioning with a prolonged analgesic effect, and reduces the potential side effects of abuse and overdose.
Collapse
Affiliation(s)
- Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Quangdon Tran
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jiyong Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Won Hyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
8
|
Ahmad KA, Shoaib RM, Ahsan MZ, Deng MY, Ma L, Apryani E, Li XY, Wang YX. Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain Behav Immun 2021; 95:344-361. [PMID: 33862171 DOI: 10.1016/j.bbi.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gabapentinoids are recommended first-line treatments for neuropathic pain. They are neuronal voltage-dependent calcium channel α2δ-1 subunit ligands and have been suggested to attenuate neuropathic pain via interaction with neuronal α2δ-1 subunit. However, the current study revealed their microglial mechanisms underlying antineuropathic pain. Intrathecal injection of gabapentin, pregabalin and mirogabalin rapidly inhibited mechanical allodynia and thermal hyperalgesia, with projected ED50 values of 30.3, 6.2 and 1.5 µg (or 176.9, 38.9 and 7.2 nmol) and Emax values of 66%, 61% and 65% MPE respectively for mechanical allodynia. Intrathecal gabapentinoids stimulated spinal mRNA and protein expression of IL-10 and β-endorphin (but not dynorphin A) in neuropathic rats with the time point parallel to their inhibition of allodynia, which was observed in microglia but not astrocytes or neurons in spinal dorsal horns by using double immunofluorescence staining. Intrathecal gabapentin alleviated pain hypersensitivity in male/female neuropathic but not male sham rats, whereas it increased expression of spinal IL-10 and β-endorphin in male/female neuropathic and male sham rats. Treatment with gabapentin, pregabalin and mirogabalin specifically upregulated IL-10 and β-endorphin mRNA and protein expression in primary spinal microglial but not astrocytic or neuronal cells, with EC50 values of 41.3, 11.5 and 2.5 µM and 34.7, 13.3 and 2.8 µM respectively. Pretreatment with intrathecal microglial metabolic inhibitor minocycline, IL-10 antibody, β-endorphin antiserum or μ-opioid receptor antagonist CTAP (but not κ- or δ-opioid receptor antagonists) suppressed spinal gabapentinoids-inhibited mechanical allodynia. Immunofluorescence staining exhibited specific α2δ-1 expression in neurons but not microglia or astrocytes in the spinal dorsal horns or cultured primary spinal cells. Thus the results illustrate that gabapentinoids alleviate neuropathic pain through stimulating expression of spinal microglial IL-10 and consequent β-endorphin.
Collapse
Affiliation(s)
- Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Rana Muhammad Shoaib
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Zaeem Ahsan
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
9
|
Jeffrey-Gauthier R, Bouyer J, Piché M, Côté MP, Leblond H. Locomotor deficits induced by lumbar muscle inflammation involve spinal microglia and are independent of KCC2 expression in a mouse model of complete spinal transection. Exp Neurol 2021; 338:113592. [PMID: 33388315 PMCID: PMC7904639 DOI: 10.1016/j.expneurol.2020.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Spinal cord injury (SCI) is associated with damage to musculoskeletal tissues of the spine. Recent findings show that pain and inflammatory processes caused by musculoskeletal injury mediate plastic changes in the spinal cord. These changes could impede the adaptive plastic changes responsible for functional recovery. The underlying mechanism remains unclear, but may involve the microglia-BDNF-KCC2 pathway, which is implicated in sensitization of dorsal horn neurons in neuropathic pain and in the regulation of spinal excitability by step-training. In the present study, we examined the effects of step-training and lumbar muscle inflammation induced by complete Freund's adjuvant (CFA) on treadmill locomotion in a mouse model of complete spinal transection. The impact on locomotor recovery of each of these interventions alone or in combination were examined in addition to changes in microglia and KCC2 expression in the dorsal and ventral horns of the sublesional spinal cord. Results show that angular motion at the hip, knee and ankle joint during locomotion were decreased by CFA injection and improved by step-training. Moreover, CFA injection enhanced the expression of the microglial marker Iba1 in both ventral and dorsal horns, with or without step-training. However, this change was not associated with a modulation of KCC2 expression, suggesting that locomotor deficits induced by inflammation are independent of KCC2 expression in the sublesional spinal cord. These results indicate that musculoskeletal injury hinders locomotor recovery after SCI and that microglia is involved in this effect.
Collapse
Affiliation(s)
- Renaud Jeffrey-Gauthier
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| | - Julien Bouyer
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, United States.
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, United States.
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
10
|
Oliveira CG, Freitas MF, de Sousa MVP, Giorgi R, Chacur M. Photobiomodulation reduces nociception and edema in a CFA-induced muscle pain model: effects of LLLT and LEDT. Photochem Photobiol Sci 2020; 19:1392-1401. [PMID: 33048106 DOI: 10.1039/d0pp00037j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photobiomodulation therapy (PBMT) is an effective therapeutic strategy and a noninvasive method to improve the regulation of inflammation and pain. Our aim was to examine the effects of different doses of PBMT on improvement of edematogenic and nociceptive responses in a myositis model in rats. We administered complete Freund's adjuvant (CFA) into the gastrocnemius muscle (GS) of rats to induce myositis and observe the effect of PBMT using different doses of energy and two types of light sources, a low-level laser (LLL) and light emitting diodes (LED). For this, we evaluated the effects of these different energies to improve nociceptive and edematogenic responses using behavioural tests. In addition, we analysed histological images in animals with myositis induced by CFA. The administration of CFA to the GS induced increased cellular infiltrates, edema and a nociceptive response when compared to animals without myositis. When we treated the CFA-induced myositis animals with PBMT (LLLT or LEDT), we observed a decrease in nociception and edema formation. Our results demonstrated that only the major energy for both the LED and LLL was able to remain in a homogeneous form throughout the period analyzed. Based on our results, we suggest that both LLLT and LEDT using the highest dose (3 J) could be an alternative treatment for myositis in rats.
Collapse
Affiliation(s)
- Camilla Garcia Oliveira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Brazil.
| | | | | | - Renata Giorgi
- Laboratory of Pathophysiology, Butantan Institute, Brazil.
| | - Marucia Chacur
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Brazil.
| |
Collapse
|
11
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
12
|
CDDO-Me Inhibits Microglial Activation and Monocyte Infiltration by Abrogating NFκB- and p38 MAPK-Mediated Signaling Pathways Following Status Epilepticus. Cells 2020; 9:cells9051123. [PMID: 32370011 PMCID: PMC7290793 DOI: 10.3390/cells9051123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Following status epilepticus (SE, a prolonged seizure activity), microglial activation, and monocyte infiltration result in the inflammatory responses in the brain that is involved in the epileptogenesis. Therefore, the regulation of microglia/monocyte-mediated neuroinflammation is one of the therapeutic strategies for avoidance of secondary brain injury induced by SE. 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), which regulates intracellular redox homeostasis. In addition, CDDO-Me has anti-inflammatory properties that suppress microglial proliferation and its activation, although the underlying mechanisms have not been clarified. In the present study, CDDO-Me ameliorated monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC) following SE, accompanied by abrogating monocyte chemotactic protein-1 (MCP-1)/tumor necrosis factor-α (TNF-α) expressions and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Furthermore, CDDO-Me inhibited nuclear factor-κB (NFκB)-S276 phosphorylation and microglial transformation, independent of Nrf2 expression. Similar to CDDO-Me, SN50 (an NFκB inhibitor) mitigated monocyte infiltration by reducing MCP-1 and p38 MAPK phosphorylation in the FPC following SE. Therefore, these findings suggest, for the first time, that CDDO-Me may attenuate microglia/monocyte-mediated neuroinflammation via modulating NFκB- and p38 MAPK-MCP-1 signaling pathways following SE.
Collapse
|
13
|
Binda K, Real C, Ferreira A, Britto L, Chacur M. Antinociceptive effects of treadmill exercise in a rat model of Parkinson's disease: The role of cannabinoid and opioid receptors. Brain Res 2020; 1727:146521. [DOI: 10.1016/j.brainres.2019.146521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
|
14
|
Turcato F, Almeida C, Mota C, Kusuda R, Carvalho A, Nascimento GC, Zanon S, Leite-Panissi CR, Lucas G. Dynamic expression of glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 in the mouse spinal cord dorsal horn under pathological pain states. Neurol Res 2019; 41:633-643. [DOI: 10.1080/01616412.2019.1603804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Turcato
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Cayo Almeida
- Federal University of ABC, São Bernardo do Campo, Brazil
| | - Clarissa Mota
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Carvalho
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Glauce C Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sonia Zanon
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Christie R Leite-Panissi
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Lucas
- Department of Physiology, Laboratory of Pain Neurobiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
- Department of Experimental Psychology, Neuroscience and Behavior Training Program, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Abstract
Clinical conditions resulting in musculoskeletal pain show important sex differences in both prevalence and degree of functional disability. The underlying mechanisms for these distinctions in pain manifestation are not fully known. However, recent preclinical studies have shown at the primary afferent level that males and females present fundamental differences in their peripheral response properties and injury-related gene expression patterns that may underlie observed afferent sensitization. At the spinal cord level, studies in various models of pain suggest important roles for the immune system, glutamate signaling and hormones in modulating sex differences. While preclinical studies have been able to characterize some of the basic underlying molecular mechanisms of sex differences in muscle pain, human studies have relied mainly on functional brain imaging studies to explain differences. Further complicating our understanding of how sex influences muscle pain is the notion that the type of injury sustained, or clinical condition may differentially activate distinct mechanisms of muscle pain development in males versus females. More research is necessary to better understand how the sexes differ in their perception of muscle pain. This review highlights recent advances in both human and animal studies of sex differences in muscle pain.
Collapse
|
16
|
Rossi A, Murta V, Auzmendi J, Ramos AJ. Early Gabapentin Treatment during the Latency Period Increases Convulsive Threshold, Reduces Microglial Activation and Macrophage Infiltration in the Lithium-Pilocarpine Model of Epilepsy. Pharmaceuticals (Basel) 2017; 10:ph10040093. [PMID: 29182533 PMCID: PMC5748648 DOI: 10.3390/ph10040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022] Open
Abstract
The lithium-pilocarpine model of epilepsy reproduces several features of temporal lobe epilepsy in humans, including the chronological timeline of an initial latency period followed by the development of spontaneous seizures. Epilepsy therapies in humans are implemented, as a rule, after the onset of the spontaneous seizures. We here studied the potential effect on epileptogenesis of starting an early treatment during the latency period, in order to prevent the development of spontaneous seizures. Adult male Wistar rats were treated with 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once status epilepticus (SE) was achieved, it was allowed to last for 20 min, and then motor seizures were controlled with the administration of 20 mg/kg diazepam. At 1DPSE (DPSE, days post-status epilepticus), animals started to receive 400 mg/kg/day gabapentin or saline for 4 days. At 5DPSE, we observed that SE induced an early profuse microglial and astroglial reactivity, increased synaptogenic trombospondin-1 expression and reduced AQP4 expression in astroglial ending feet. Blood brain barrier (BBB) integrity seemed to be compromised, as infiltrating NG2+ macrophages and facilitated access to the CNS was observed by transplanting eGFP+ blood cells and bone marrow-derived progenitors in the SE animals. The early 4-day gabapentin treatment successfully reduced microglial cell reactivity and blood-borne cell infiltration, without significantly altering the mRNA of proinflammatory cytokines IL-1β and TNFα immediately after the treatment. After 21DSPE, another group of animals that developed SE and received 4 days of gabapentin treatment, were re-exposed to subconvulsive accumulative doses of pilocarpine (10 mg/kg/30 min) and were followed by recording the Racine scale reached. Early 4-day gabapentin treatment reduced the Racine scale reached by the animals, reduced animal mortality, and reduced the number of animals that achieved SE (34% vs. 72%). We conclude that early gabapentin treatment following SE, during the latency period, is able to reduce neuroinflammation and produces a persistent effect that limits seizures and increases convulsive threshold, probably by restricting microglial reactivity and spurious synaptogenesis.
Collapse
Affiliation(s)
- Alicia Rossi
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP1121, Argentina.
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Alberto Javier Ramos
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP1121, Argentina.
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| |
Collapse
|