1
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Inhibitory Effects of Rabdosia rubescens in Esophageal Squamous Cell Carcinoma: Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2696347. [DOI: 10.1155/2022/2696347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently occurring diseases in the world. Rabdosia rubescens (RR) has been demonstrated to be effective against ESCC; however, the mechanism is unknown. The primary gene modules related to the clinical characteristics of ESCC were initially investigated in this research using weighted gene co-expression network analysis (WCGNA) and differential expression gene (DEG) analysis. We employed network pharmacology to study the hub genes linked with RR therapy on ESCC. A molecular docking simulation was achieved to identify the binding activity of central genes to RR compounds. Lastly, a chain of experimentations was used to verify the inhibitory effect of RR water extract on the ESCC cell line in vitro. The outcomes revealed that CCNA2, TOP2A, AURKA, CCNB2, CDK2, CHEK1, and other potential central targets were therapeutic targets for RR treatment of ESCC. In addition, these targets are over-represented in several cancer-related pathways, including the cell cycle signaling pathway and the p53 signaling pathway. The predicted targets displayed good bonding activity with the RR bioactive chemical according to a molecular docking simulation. In vitro experiments revealed that RR water extracts could inhibit ESCC cells, induce cell cycle arrest, inhibit cell proliferation, increase P53 expression, and decrease CCNA2, TOP2A, AURKA, CCNB2, CDK2, and CHEK1. In conclusion, our study reveals the molecular mechanism of RR therapy for ESCC, providing great potential for identifying effective compounds and biomarkers for ESCC therapy.
Collapse
|
3
|
Forzato C, Nitti P. New Diterpenes with Potential Antitumoral Activity Isolated from Plants in the Years 2017-2022. PLANTS (BASEL, SWITZERLAND) 2022; 11:2240. [PMID: 36079622 PMCID: PMC9460660 DOI: 10.3390/plants11172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Diterpenes represent a wider class of isoprenoids, with more than 18,000 isolated compounds, and are present in plants, fungi, bacteria, and animals in both terrestrial and marine environments. Here, we report on the fully characterised structures of 251 new diterpenes, isolated from higher plants and published from 2017, which are shown to have antitumoral activity. An overview on the most active compounds, showing IC50 < 20 μM, is provided for diterpenes of different classes. The most active compounds were extracted from 29 different plant families; particularly, Euphorbiaceae (69 compounds) and Lamiaceae (54 compounds) were the richest sources of active compounds. A better activity than the positive control was obtained with 33 compounds against the A549 cell line, 28 compounds against the MCF-7 cell line, 9 compounds against the HepG2 cell line, 8 compounds against the Hep3B cell line, 19 compounds against the SMMC-7721 cell line, 9 compounds against the HL-60 cell line, 24 compounds against the SW480 cell line, and 19 compounds against HeLa.
Collapse
|
4
|
Fu L, Han BK, Meng FF, Wang JW, Wang TY, Li HJ, Sun YY, Zou GN, Li XR, Li W, Bi YF, Ke Y, Liu HM. Jaridon 6, a new diterpene from Rabdosia rubescens (Hemsl.) Hara, can display anti-gastric cancer resistance by inhibiting SIRT1 and inducing autophagy. Phytother Res 2021; 35:5720-5733. [PMID: 34411362 DOI: 10.1002/ptr.7231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022]
Abstract
Tumor resistance is the main cause of treatment failure and is associated with many tumor factors. Jaridon 6, a new diterpene extracted from Rabdosia rubescens (Hemsl.) Hara, which has been previously extracted by our research team, has been tested having more obvious advantages in resistant tumor cells. However, its mechanism is unclear. In this study, we studied the effect and the specific mechanism of Jaridon 6 in resistant gastric cancer cells. Cytotoxicity test, colony test, western blotting, and nude test verified the anti-drug resistance ability of Jaridon 6 in the MGC803/PTX and MGC803/5-Fu cells. Jaridon 6 has shown obvious inhibitory effects in the sirtuin 1 (SIRT1) enzyme test. Transmission electron microscopy and immunofluorescence tests further proved the autophagic action of Jaridon 6. Jaridon 6 could inhibit the proliferation of the resistant gastric cancer cell in vivo and in vitro. Jaridon 6 inhibited SIRT1 enzyme and induced autophagy by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway. Thus, it may be considered for treating gastric cancer resistance by individual or combined administration, as an SIRT1 inhibitor and autophagy inducer.
Collapse
Affiliation(s)
- Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Bing-Kai Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Fang-Feng Meng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Jun-Wei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Tian-Ye Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Hui-Ju Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Ying-Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Guo-Na Zou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Xiao-Rui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Yue-Feng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
5
|
Li Y, Li N, Shi J, Ahmed T, Liu H, Guo J, Tang W, Guo Y, Zhang Q. Involvement of Glutathione Depletion in Selective Cytotoxicity of Oridonin to p53-Mutant Esophageal Squamous Carcinoma Cells. Front Oncol 2020; 9:1525. [PMID: 32010620 PMCID: PMC6974803 DOI: 10.3389/fonc.2019.01525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Oridonin, a diterpenoid compound isolated from traditional Chinese medicine Rabdosia rubescens, has shown antitumor effects to esophageal cancer. However, its molecular mechanism is not fully understood, which limits its clinical application. In the present study, we used RNA-seq analysis to check the transcriptome changes after oridonin treatment and we found genes controlling the GSH-ROS system were up-regulated, namely SLC7A11, TXNRD1, TRIM16, SRXN1, GCLM, and GCLC. Furthermore, our data suggest that oridonin significantly increased the production of ROS in EC109 and TE1 cells, which can be inhibited by NAC. Interestingly, oridonin can dramatically reduce intracellular GSH levels in TE1 cells in a concentration and time-dependent manner. In addition, cell death caused by oridonin was strongly inhibited by GSH (1 mM), while GSSG (1 mM) had little effect. At the same time, we also found that oridonin showed selective cytotoxicity to esophageal squamous carcinoma cell with p53 mutation since mut-p53 cells had lower SLC7A11 expression, a component of the cystine/glutamate antiporter. We also found that γ-glutamyl cysteine synthetase inhibitor (BSO) synergizes with oridonin to strongly inhibit EC109 cells at a low dose. These results suggested that the antitumor effects of oridonin are based on its –SH reactivity and glutathione depletion. Esophageal squamous carcinoma cells with p53-mutation showed hypersensitivity to oridonin because of the suppression of SLC7A11 expression by p53 mutation.
Collapse
Affiliation(s)
- Yinchao Li
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nana Li
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Tanzeel Ahmed
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongmin Liu
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Yongjun Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Zhang
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Li L, Chen L, Lu X, Huang C, Luo H, Jin J, Mei Z, Liu J, Liu C, Shi J, Chen P, Jiang Y. Data-Independent Acquisition-Based Quantitative Proteomics Analysis Reveals Dynamic Network Profiles during the Macrophage Inflammatory Response. Proteomics 2020; 20:e1900203. [PMID: 31876377 DOI: 10.1002/pmic.201900203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Understanding of the molecular regulatory mechanisms underlying the inflammatory response is incomplete. The present study focuses on characterizing the proteome in a model of inflammation in macrophages treated with lipopolysaccharide (LPS). A total of 3597 proteins are identified in macrophages with the data-independent acquisition (DIA) method. Bioinformatic analyses reveal discrete modules and the underlying molecular mechanisms, as well as the signaling network that modulates the development of inflammation. It is found that a total of 87 differentially expressed proteins are shared by all stages of LPS-induced inflammation in macrophages and that 18 of these proteins participate in metabolic processes by forming a tight interaction network. Data support the hypothesis that ribosome proteins play a key role in regulating the macrophage response to LPS. Interestingly, conjoint analyses of the transcriptome and proteome in macrophages treated with LPS reveal that the genes upregulated at both the mRNA and protein levels are mainly involved in inflammation and the immune response, whereas the genes downregulated are significantly enriched in metabolism-related processes. These results not only provide a more comprehensive understanding of the molecular mechanisms of inflammation mediated by bacterial infection but also provide a dynamic proteomic resource for further studies.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiovascular Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China.,Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou Avenue, Guangzhou, 510630, China
| | - Xinya Lu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chenyang Huang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingmiao Jin
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuzhong Mei
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Junmin Shi
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Xue W, Fan Z, Li L, Yan D, Shen Z, Zhai Y, Kan Q, Zhao J. Identification of esophageal cancer pathway deviation and construction of a diagnosis model using three kernel genes. J Cell Physiol 2019; 234:18098-18110. [PMID: 30835828 DOI: 10.1002/jcp.28442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Abstract
The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model works with two other genes: hepatocyte nuclear factor 1B (HNF1B) and cAMP responsive element binding protein 3-like 1 (CREB3L1). By comparing carcinoma tissue and normal tissue samples, we extracted all the differentially expressed mRNAs. The bioinformatics analysis resulted in the discovery of three prominent genes. Eventually, the three genes were utilized to train a deep-learning model. An additional wet experiment was conducted to validate the effect of IL35. All the differentially expressed genes were enriched into nine groups, each of which has specific biological functions. Given that the three significant genes HNF1B, CREB3L1, and IL35 as diagnostic features, a deep-learning model was constructed, reaching an accuracy of 93% in the training set and 87% in the test set. Our findings suggest that IL35, along with the other two signatures, can distinguish esophageal tumor samples from normal samples precisely.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Precision Clinical Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Shen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Precision Clinical Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
He S, Wang W, Yang Y, Li E, Xu L, Chen L. FAM3B promotes progression of oesophageal carcinoma via regulating the AKT-MDM2-p53 signalling axis and the epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:1375-1385. [PMID: 30565387 PMCID: PMC6349344 DOI: 10.1111/jcmm.14040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023] Open
Abstract
FAM3B has been suggested to play important roles in the progression of many cancers, such as gastric, oral, colon and prostate cancer. However, little is known about the role of FAM3B in human esophageal squamous cell carcinoma (ESCC). In the present study, we found that FAM3B expression was higher in ESCC tissues than in adjacent normal tissues. Using quantitative real-time polymerase chain reaction, we found similar results in cell lines. FAM3B expression was significantly related to T/TNM stage. Importantly, Kaplan-Meier analysis revealed that a high expression level of FAM3B predicted a poor outcome for ESCC patients. Overexpression of FAM3B inhibits ESCC cell death, increases oesophageal tumour growth in xenografted nude mice, and promotes ESCC cell migration and invasion. Further studies confirmed that FAM3B regulates the AKT-MDM2-p53 pathway and two core epithelial-to-mesenchymal transition process markers, Snail and E-cadherin. Our results provide new insights into the role of FAM3B in the progression of ESCC and suggest that FAM3B may be a promising molecular target and diagnostic marker for ESCC.
Collapse
Affiliation(s)
- Song‐Lin He
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
- North Sichuan Medical CollegeNanchongChina
| | - Wen‐Ping Wang
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Yu‐Sang Yang
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - En‐Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
| | - Li‐Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyShantou University Medical CollegeShantouChina
| | - Long‐Qi Chen
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|