1
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Ding R, Kan Q, Wang T, Xiao R, Song Y, Li D. Ginsenoside Rh2 regulates triple-negative breast cancer proliferation and apoptosis via the IL-6/JAK2/STAT3 pathway. Front Pharmacol 2025; 15:1483896. [PMID: 39845783 PMCID: PMC11751231 DOI: 10.3389/fphar.2024.1483896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential. Methods Network analysis and transcriptome sequencing were utilized to explore the potential mechanisms of ginsenoside Rh2 in treating TNBC. In vivo imaging and immunohistochemistry were employed to examine the effects of ginsenoside Rh2 in a TNBC mouse model. Functional assays were conducted to assess the impact of ginsenoside Rh2 on TNBC cell behavior. Additionally, ELISA, Western blot, and quantitative real-time PCR were used to further investigate the mechanisms of ginsenoside Rh2-induced apoptosis in TNBC cells. Results Through network analysis, 47 common targets were identified, and Gene Ontology (GO) enrichment analysis suggested that ginsenoside Rh2 may exert therapeutic effects in TNBC by influencing apoptosis, cell proliferation, and protein kinase activity. Both transcriptomic analysis and network analysis revealed the JAK/STAT signaling pathway as a key mechanism. Ginsenoside Rh2 inhibited tumor growth in TNBC mice and reduced the expression of IL- 6, IL-6R, STAT3, Bcl-2, and Bcl-xL in tumor tissues. The ability of ginsenoside Rh2 to inhibit TNBC cell proliferation was further confirmed by attenuating the activation of the IL-6/JAK2/STAT3 apoptosis pathway and reducing the expression of protein kinases AMPK-α1 and PKA-Cα. Conclusion Based on network analysis and experimental validation, our findings demonstrate that ginsenoside Rh2 regulates TNBC proliferation and apoptosis through suppression of the IL-6/JAK2/STAT3 pathway, both in vitro and in vivo. This comprehensive approach represents a significant advancement in understanding the therapeutic potential of ginsenoside Rh2 in treating TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhang R, Liao Y, Gao Y, Tian H, Wu S, Zeng Q, He Q, Zhang R, Wei C, Liu J. Evaluation of the Efficacy, Safety, and Clinical Outcomes of Ginsenosides as Adjuvant Therapy in Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Integr Cancer Ther 2024; 23:15347354241293790. [PMID: 39474841 PMCID: PMC11526256 DOI: 10.1177/15347354241293790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Ginsenosides (GS), including total GS, Rh2, Rg3 and compound K (CK), have been utilized as adjuvants in transarterial chemoembolization (TACE), surgery, and chemotherapy for hepatocellular carcinoma (HCC) therapy. However, the safety and efficacy of such combination treatments have been contradictory across different studies. This study aims to systematically evaluate the efficacy and safety of GS as adjuvant therapy for HCC. Methods: A literature search of PubMed, CNKI, Wanfang Data, Cochrane Library, Embase, and Web of Science was conducted up to May 2024 for clinical randomized controlled trials (RCTs) on GS-based adjuvant treatments for HCC. Two researchers independently screened the literature, extracted relevant data, and assessed study quality. Meta-analysis was conducted using RevMan 5.4. Results: Nineteen articles involving 1448 patients were included. Meta-analysis showed that GS as an adjuvant therapy for HCC improved disease control rate (risk ratio (RR) = 1.42, 95% CI [1.26, 1.60]), objective response rate (RR = 1.20, 95% CI [1.09, 1.32]), life quality (RR = 1.49, 95% CI [1.23, 1.79]), 1-year overall survival rate (RR = 1.27, 95% CI [1.06, 1.52]), 2-year overall survival rate (RR = 1.43, 95% CI [1.06, 1.95]), ehanced Child-Pugh in A level (RR = 1.59, 95% CI [1.08, 2.34]), Child-Pugh in B level (RR = 1.28, 95% CI [1.08, 1.52]); increased CD3+ (MD = 8.81, 95% CI [3.91, 13.71]), NKC (MD = 8.00, 95% CI [6.76, 9.24]) and CD4+ (MD = 9.38, 95% CI [8.04, 10.72]), and reduced incidence of adverse reactions including nausea and vomiting (RR = 0.66, 95% CI [0.57, 0.77]), anorexia (RR = 0.33, 95% CI [0.21, 0.50]), leukopenia (RR = 0.55, 95% CI [0.46, 0.67]) and myelosuppression (RR = 0.54, 95% CI [0.40, 0.74]); decreased Child-Pugh in C level (RR = 0.43, 95% CI [0.27, 0.68]) and CD4+/CD8+ ratio (MD = 0.50, 95% CI [0.47, 0.57]). Conclusions: In summary, GS combined with Western medical approaches (TACE, surgery, chemotherapy) for the treatment of HCC can improve clinical efficacy, increase overall survival rates, enhance patient life quality, and reduce the occurrence of adverse reactions. However, due to the generally low quality of the included studies, more large-sample, multi-center, high-quality, RCTs are warranted to further consolidate these findings.
Collapse
Affiliation(s)
- Renjie Zhang
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Yiling Liao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Yuan Gao
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Hengyu Tian
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Shenfeng Wu
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Qingteng Zeng
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Qinghua He
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Ruikun Zhang
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Chunshan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Jialin Liu
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhou N, Mao F, Cheng S. Mechanism Research and Application for Ginsenosides in the Treatment of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7214037. [PMID: 38027042 PMCID: PMC10667047 DOI: 10.1155/2023/7214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Ginsenosides, the main active pharmacological ingredients of ginseng, have been widely used for the treatment of numerous carcinomas. Hepatocellular carcinoma (HCC) is 3rd leading malignant tumor in terms of mortality worldwide. Accumulating evidence indicates that ginsenosides play a vital role in the prevention and treatment of HCC. Ginsenosides can significantly improve the symptoms of HCC, and their anticancer activity is mainly involved in inhibiting proliferation and migration, inducing cell cycle arrest at the G0/G1 phase, promoting caspase-3 and 8-mediated apoptosis, regulating autophagy related to Atg5, Atg7, Atg12, LC3-II, and PI3K/Akt pathways, and lowering invasion and metastasis associated with decreased nuclear translocation of NF-κB p65 and MMP-2/9, increasing IL-2 and IFN-γ levels to enhance immune function, as well as regulating the gut-liver axis. In addition, ginsenosides can be used as an adjuvant to conventional cancer therapies, enhancing sensitivity to chemotherapy drugs, and improving efficacy and/or reducing adverse reactions through synergistic effects. Therefore, the current manuscript discusses the mechanism and application of ginsenosides in HCC. It is hoped to provide theoretical basis for the treatment of HCC with ginsenosides.
Collapse
Affiliation(s)
- Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuqun Cheng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
| |
Collapse
|
5
|
He G, Huang W, Zhou Z, Wu H, Tian Q, Tan L, Li X. Dynamic contrast-enhanced CT and clinical features of sarcomatoid hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:3091-3100. [PMID: 37428205 PMCID: PMC10480274 DOI: 10.1007/s00261-023-03983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To investigate the dynamic contrast-enhanced computed tomography (CECT) features and clinical characteristics of sarcomatoid hepatocellular carcinoma (S-HCC). METHODS We retrospectively reviewed the CECT data and clinical findings of 13 patients (11 male and 2 female, with an average age of 58.6 ± 11.2 years) with pathologically proven S-HCC, including 9 patients with surgical resection and 4 patients with biopsy examination. All patients underwent CECT scans. Two radiologists reviewed and evaluated general features, CECT features and extratumoral features of each lesions based on a consensus. RESULTS Among the thirteen tumors, a mean size of 66.7 mm was observed, ranging in diameter from 30 to 146 mm. Seven of thirteen patients had hepatitis B virus (HBV) infection and an elevation of alpha-fetoprotein (AFP) level. Most of cases located in the right lobe of liver (84.6%, 11/13). Nine of thirteen tumors showed lobulated or wavy contours and infiltrative morphology, while eight tumors presented with unclear margin. The tumor textures were mainly heterogeneous for ischemia or necrosis, with solid components dominantly in all cases. Eight of thirteen tumors exhibited "slow-in and and slow-out" dynamic enhancement pattern in CECT, with a enhancement peak in the portal venous phase. Portal vein or hepatic thrombus, adjacent organs invasion and lymph node metastasis were observed in two patients, respectively. Four of thirteen lesions occurred intrahepatic metastasis and hepatic surface retraction respectively. CONCLUSION S-HCC gengerally seen in elderly male with HBV infection and elevated AFP level. The CT manifestations including: large diameter, frequently hepatic right lobe involvement, lobular or wavy contours, ill-defined margins, infiltrative morphology, obvious heterogeneity and dynamic enhancement pattern of "slow-in and and slow-out" , contributed to the diagnosis of S-HCC. These tumors usually occurred hepatic surface retraction and intrahepatic metastasis.
Collapse
Affiliation(s)
- Guangming He
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.250, Changgang East Road, Haizhu District, Guangzhou, 510399 Guangdong China
| | - Weiqing Huang
- Guangzhou Medical University, Guangzhou, 511495 Guangdong China
| | - Zhimei Zhou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.250, Changgang East Road, Haizhu District, Guangzhou, 510399 Guangdong China
| | - Hui Wu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.250, Changgang East Road, Haizhu District, Guangzhou, 510399 Guangdong China
| | - Qin Tian
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510399 Guangdong China
| | - Lilian Tan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.250, Changgang East Road, Haizhu District, Guangzhou, 510399 Guangdong China
| | - Xi Li
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.250, Changgang East Road, Haizhu District, Guangzhou, 510399 Guangdong China
| |
Collapse
|
6
|
Ouyang JY, Lin WJ, Dong JM, Yang Y, Yang HK, Zhou ZL, Wang RQ. Exploring the pharmacological mechanism of Wuzhuyu decoction on hepatocellular carcinoma using network pharmacology. World J Clin Cases 2023; 11:6327-6343. [PMID: 37900230 PMCID: PMC10601014 DOI: 10.12998/wjcc.v11.i27.6327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 07/28/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Wuzhuyu decoction, a traditional Chinese medicinal formula, is effective in treating hepatocellular carcinoma (HCC). AIM To explore the potential mechanism of action of Wuzhuyu decoction against HCC. METHODS The active components of each Chinese herbal medicinal ingredient in Wuzhuyu decoction and their targets were obtained from the Traditional Chinese Medicine Database and Analysis Platform. HCC was used as a search query in GeneCards, Online Mendelian Inheritance in Man, Malacards, DisGeNET, Therapeutic Target Database, and Comparative Toxicogenomics Database. The overlapping targets of the Wuzhuyu decoction and HCC were defined, and then protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. CytoHubba was used to select hub genes, and their binding activities and key active components were verified using molecular docking. RESULTS A total of 764 compounds, 77 active compounds, and 204 potential target genes were identified in Wuzhuyu decoction. For HCC, 9468 potential therapeutic target genes were identified by combining the results from the six databases and removing duplicates. A total of 179 overlapping targets of Wuzhuyu decoction and HCC were defined, including 10 hub genes (tumor necrosis factor, interleukin-6, AKT1, TP53, caspase-3, mitogen-activated protein kinase 1, epidermal growth factor receptor, MYC, mitogen-activated protein kinase 8, and JUN). There were six main active components (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, β-carotene, and β-sitosterol) that may act on hub genes to treat HCC in Wuzhuyu decoction. Kyoto Encyclopedia of Genes and Genomes enrichment analysis mainly involved the mitogen-activated protein kinase, p53, phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt, Janus kinase-signal transducer of activators of transcription, and Hippo signaling pathways. Further verification based on molecular docking results showed that the small molecule compounds (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, β-carotene, and β-sitosterol) contained in Wuzhuyu decoction generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. CONCLUSION This study revealed that Wuzhuyu decoction may be a latent multicomponent, multitarget, and multipathway treatment for HCC. It provided novel insights for verifying the mechanism of Wuzhuyu decoction in the treatment of HCC.
Collapse
Affiliation(s)
- Jia-Ying Ouyang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Wei-Jie Lin
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
7
|
Guan W, Qi W. Ginsenoside Rh2: A shining and potential natural product in the treatment of human nonmalignant and malignant diseases in the near future. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154938. [PMID: 37406390 DOI: 10.1016/j.phymed.2023.154938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ginseng is well-known as one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide including East, Russia, Southeast Asia, North America and some Western European countries. Ginsenosides, as one of the main high active components of Ginseng, have various pharmacological activities, such as anti-inflammatory, antianaphylaxis, anti-depression, and anticancer activities. Ginsenoside Rh2 (Rh2), one of the major bioactive ginsenosides in Panax ginseng, also exhibits versatile pharmacological activities, such as increasing non-specific resistance and specific immune response, improving cardiac function and fibrosis, anti-inflammatory effects and antitumor effects, which may serve as an excellent medicinal potential. PURPOSE As one of hundreds of ginsenosides being identified from ginseng, Rh2 exerts a markedly pharmacological effect on various diseases without severe toxicity, it has attracted many researchers 'attention. Although Rh2 plays important roles in some animal models and cell lines to simulate human diseases, its underlying molecular mechanisms have yet to be determined. During the past ten years, nearly 450 studies on Rh2 in the treatment of complex disease have been reported, however, up to now, no comprehensive reviews about the roles of Rh2 in animal models and cellular lines of human nonmalignant and malignant diseases have been conducted. METHOD We searched articles on ginsenoside-related diseases from December 2010 to February 2023 in peer-reviewed and nonclinical databases, which include Web of Science, Scopus, PubMed, China national knowledge internet and Medline, and using the following keywords: Ginsenoside Rh2, Human diseases, Cancer, Mechanisms, Chinese herbal medicine, Natural products and Signaling pathway. RESULTS Therefore, in this review, we make a comprehensive summary on the roles of Rh2 and support the potential mechanisms of Rh2 according to the disease classification, including nonmalignant disease such as ulcerative colitis, neuropathic pain, Asthma, myocardial injury, depression and malignant disease such as breast cancer, colorectal cancer, hepatocellular carcinoma and gastric cancer. Finally, the combination therapy of Rh2 and other medications in human diseases are summarized, apart from that, there are other problems such as the bioavailability of oral administration Rh2 to be overcome in following research. CONCLUSION These findings provide strong evidence that Ginsenoside Rh2 plays important roles in the treatment of nonmalignant and malignant diseases.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; School of Medicine, Nantong University, Nantong, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
8
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 PMCID: PMC10236851 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
9
|
Zhou C, Gong T, Chen J, Chen T, Yang J, Zhu P. Production of a Novel Protopanaxatriol-Type Ginsenoside by Yeast Cell Factories. Bioengineering (Basel) 2023; 10:bioengineering10040463. [PMID: 37106650 PMCID: PMC10135449 DOI: 10.3390/bioengineering10040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenosides, the main active compounds in Panax species, are glycosides of protopanaxadiol (PPD) or protopanaxatriol (PPT). PPT-type ginsenosides have unique pharmacological activities on the central nervous system and cardiovascular system. As an unnatural ginsenoside, 3,12-Di-O-β-D-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (3β,12β-Di-O-Glc-PPT) can be synthesized through enzymatic reactions but is limited by the expensive substrates and low catalytic efficiency. In the present study, we successfully produced 3β,12β-Di-O-Glc-PPT in Saccharomyces cerevisiae with a titer of 7.0 mg/L by expressing protopanaxatriol synthase (PPTS) from Panax ginseng and UGT109A1 from Bacillus subtilis in PPD-producing yeast. Then, we modified this engineered strain by replacing UGT109A1 with its mutant UGT109A1-K73A, overexpressing the cytochrome P450 reductase ATR2 from Arabidopsis thaliana and the key enzymes of UDP-glucose biosynthesis to increase the production of 3β,12β-Di-O-Glc-PPT, although these strategies did not show any positive effect on the yield of 3β,12β-Di-O-Glc-PPT. However, the unnatural ginsenoside 3β,12β-Di-O-Glc-PPT was produced in this study by constructing its biosynthetic pathway in yeast. To the best of our knowledge, this is the first report of producing 3β,12β-Di-O-Glc-PPT through yeast cell factories. Our work provides a viable route for the production of 3β,12β-Di-O-Glc-PPT, which lays a foundation for drug research and development.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jingjing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tianjiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jinling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
11
|
Zhao Y, Cheng Y, Qu Y. The role of EZH2 as a potential therapeutic target in retinoblastoma. Exp Eye Res 2023; 227:109389. [PMID: 36669714 DOI: 10.1016/j.exer.2023.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) has been reported selectively expressed in postnatal human retinoblastoma (RB). While, the contribution of EZH2 in progression of RB and its clinical importance has not been clarified. Here, immunohistochemistry (IHC) was performed on tumor specimens from 53 RB patients. UNC1999 and GSK503, inhibitors targeting EZH2, were incubated with human RB cell line WERI-Rb-1 and Y79 to assess the role and mechanism of EZH2 in RB proliferation, metastasis and tumor glycolysis. Administration of UNC1999 in subcutaneous tumor model of RB was conducted. The results showed that highly expressed EZH2 in RB tissues was significantly associated with the poor overall survival. UNC1999 and GSK503 inhibited proliferation, migration, invasion and tumor glycolysis of RB. Results in mouse xenograft model confirmed the inhibitory effect of UNC1999 on tumor growth of RB and the regulation effect of EZH2 to STAT3/FoxO1 signaling pathway. Therefore, EZH2 is rewarding to study as a potential target for anti-RB treatment.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China
| | - Ying Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China
| | - Yi Qu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China.
| |
Collapse
|
12
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
13
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
14
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
15
|
Ginsenoside Rh2 inhibits breast cancer cell growth via ERβ-TNFα pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:647-656. [PMID: 35593465 PMCID: PMC9828196 DOI: 10.3724/abbs.2022039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ginsenoside Rh2 is one of rare panaxidiols extracted from Panax ginseng and a potential estrogen receptor ligand that exhibits moderate estrogenic activity. However, the effect of Rh2 on growth inhibition and its underlying molecular mechanism in human breast cells are not fully understood. In this study, we tested cell viability by MTT and colony formation assays. Cell growth and cell cycle were determined to investigate the effect of ginsenoside Rh2 by flow cytometry. The expressions of estrogen receptors (ERs), TNFα, and apoptosis-related proteins were detected by qPCR and western blot analysis. The mechanisms of ERα and ERβ action were determined using transfection and inhibitors. Antitumor effect of ginsenoside Rh2 against MCF-7 cells was investigated in xenograft mice. Our results showed that ginsenoside Rh2 induced apoptosis and G1/S phase arrest in MCF-7 cells. Treatment of cells with ginsenoside Rh2 down-regulated protein levels of ERα, and up-regulated mRNA and protein levels of ERβ and TNFα. We also found that ginsenoside Rh2-induced TNFα over-expression is through up-regulation of ERβ initiated by ginsenoside Rh2. Furthermore, ginsenoside Rh2 induced MCF-7 cell apoptosis via estrogen receptor β-TNFα pathway in vivo. These results demonstrate that ginsenoside Rh2 promotes TNFα-induced apoptosis and G1/S phase arrest via regulation of ERβ.
Collapse
|
16
|
Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death Dis 2022; 13:155. [PMID: 35169119 PMCID: PMC8847585 DOI: 10.1038/s41419-022-04601-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs. ![]()
Collapse
|
17
|
Long non-coding RNA FOXP4-AS1 facilitates the biological functions of hepatocellular carcinoma cells via downregulating ZC3H12D by mediating H3K27me3 through recruitment of EZH2. Cell Biol Toxicol 2022; 38:1047-1062. [PMID: 34545456 PMCID: PMC9750913 DOI: 10.1007/s10565-021-09642-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some studies have reported the effect of long non-coding RNA forkhead box P4 antisense RNA 1 (lncRNA FOXP4-AS1) on hepatocellular carcinoma (HCC). Here, we aimed to discuss the effects of FOXP4-AS1/enhancer of zeste homolog 2 (EZH2)/trimethylation of lysine 27 on histone H3 (H3K27me3)/zinc finger CCCH-type containing 12D (ZC3H12D) axis on HCC. METHODS The expression of FOXP4-AS1, EZH2, and ZC3H12D, and abundance of H3K27me3 in HCC tissues and cells were tested. The relationship between FOXP4-AS1 expression and prognosis of HCC patients was analyzed. The biological functions of HCC cells were detected via loss- and gain-of-function assays. The tumor weight and volume in vivo were tested. The interaction between FOXP4-AS1 and EZH2 as well as that between EZH2 and H3K27me3 was verified. RESULTS FOXP4-AS1 and EZH2 expression and H3K27me3 abundance were enhanced while ZC3H12D expression was depressed in HCC tissues and cells. Knockdown of FOXP4-AS1 suppressed biological functions of HCC cells as well as the weight and volume of HCC transplanted tumor. Depleting ZC3H12D reversed the effect of downregulated FOXP4-AS1 on HCC cells. FOXP4-AS1 suppressed ZC3H12D expression via mediating H3K27me3 by recruitment of EZH2. CONCLUSION The key findings of the present study demonstrate that FOXP4-AS1 suppresses ZC3H12D expression via mediating H3K27me3 by recruitment of EZH2, thus promoting the progression of HCC.
Collapse
|
18
|
Zhang C, Feng S, Tu Z, Sun J, Rui T, Zhang X, Huang H, Ling Q, Zheng S. Sarcomatoid hepatocellular carcinoma: From clinical features to cancer genome. Cancer Med 2021; 10:6227-6238. [PMID: 34331411 PMCID: PMC8446410 DOI: 10.1002/cam4.4162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sarcomatoid hepatocellular carcinoma (HCC) is a rare and highly lethal histological subtype of HCC, with completely unknown genetic etiology and therapeutic targets. METHODS We included 16 patients with sarcomatoid HCC receiving radical resection among 6731 cases of pathological confirmed HCC in year 2008 to 2018 in our hospital. We compared the clinical features, prognosis and cancer genome between 15 sarcomatoid HCC and propensity score-matched 75 non-sarcomatoid HCC patients. The other concurrent case was analyzed using phylogenetic tree to assess the tumor heterogeneity and evolution. RESULTS Sarcomatoid HCC group showed larger tumor size, more advanced differentiation grade, lower tumor free survival (p = 0.038) and overall survival (p = 0.001), and sarcomatoid type was an independent risk factor for patient death. Integrating sarcomatoid subtype into AJCC staging could increase the diagnostic curve in predicting patient survival. The cancer genome spectrum showed sarcomatoid HCC group had significant higher mutation rates in CDKN2A, EPHA5, FANCM and MAP3K1. Mutations in CDKN2A significantly reduced tumor-free and overall survival in sarcomatoid HCC patients. Moreover, 46.6% sarcomatoid HCC patients had druggable mutations in cell cycle pathway genes, which were targeted by Abemaciclib, et al. We also found sarcomatoid and non-sarcomatoid lesions might originate from a common progenitor but progress differently. CONCLUSION Our cancer genome analysis showed a specific genomic profile of sarcomatoid HCC, which were characterized by a high mutation rate in cell cycle genes particularly CDKN2A. The results indicate CDK4/6 inhibitors including abemaciclib, ribociclib and palbociclib as potential therapeutic targets and may help for therapeutic decision making.
Collapse
MESH Headings
- Aged
- Aminopyridines/therapeutic use
- Benzimidazoles/therapeutic use
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/therapy
- Chemotherapy, Adjuvant
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- DNA Helicases/genetics
- Disease-Free Survival
- Female
- Follow-Up Studies
- Hepatectomy
- Humans
- Liver/pathology
- Liver/surgery
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/therapy
- MAP Kinase Kinase Kinase 1/genetics
- Male
- Middle Aged
- Mutation Rate
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Prognosis
- Receptor, EphA5/genetics
- Risk Factors
- Tumor Burden
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shi Feng
- Department of Pathologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhenhua Tu
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingqi Sun
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Rui
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xueyou Zhang
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haitao Huang
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qi Ling
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - Shusen Zheng
- Department of Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| |
Collapse
|
19
|
Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, Wang H. lncRNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1012-1023. [PMID: 34141456 PMCID: PMC8167202 DOI: 10.1016/j.omtn.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
The role of long non-coding RNA (lncRNA) has been displayed in colorectal cancer (CRC). Here, we aimed to discuss the role of lncRNA interleukin enhancer-binding factor 3-antisense RNA 1 (ILF3-AS1)/enhancer of zeste homolog 2 (EZH2)/cyclin-dependent kinase inhibitor 2 (CDKN2A)/histone 3 (H3) lysine 27 trimethylation (H3K27me3) in cell proliferation and metastasis of CRC. ILF3-AS1, EZH2, and CDKN2A levels in CRC tissues and cells were detected. The relationship between ILF3-AS1/EZH2 expression and the clinicopathological features of CRC was analyzed. High/low expression of ILF3-AS1/EZH2 plasmids were composed to explore the function of ILF3-AS1/EZH2 in invasion, migration, proliferation, colony formation, and apoptosis of CRC cells. The growth status of nude mice was observed to verify the in vitro results from in vivo experiment. ILF3-AS1 and EZH2 increased, whereas CDKN2A reduced in CRC tissues and cells. ILF3-AS1 and EZH2 expression was linked to Dukes stage, distant metastasis, vascular invasion, and lymph node metastasis of CRC patients. Depleted ILF3-AS1 or reduced EZH2 suppressed proliferation, migration, colony-formation, and invasion ability, as well as facilitated apoptosis of CRC cells and attenuated the tumor growth in CRC mice. ILF3-AS1 accelerates the proliferation and metastasis of CRC cells by recruiting histone methylase EZH2 to induce trimethylation of H3K27 and downregulate CDKN2A.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Haiyao Yu
- Chief Pharmacist, Changchun Food and Drug Inspection Center, Changchun, Jilin, People’s Republic of China
| | - Zhenkun Yan
- Endoscopy Center, The China-Japan Union Hospital of Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| |
Collapse
|
20
|
He XL, Xu XH, Shi JJ, Huang M, Wang Y, Chen X, Lu JJ. Anticancer Effects of Ginsenoside Rh2: A Systematic Review. Curr Mol Pharmacol 2021; 15:179-189. [PMID: 33687905 DOI: 10.2174/1874467214666210309115105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As one of the effective pharmacological constituents of Ginseng Radix et Rhizoma, ginsenoside Rh2 (Rh2) exerts a remarkable anticancer effect on various cancer cell lines in vitro and strongly inhibits tumor growth in vivo without severe toxicity. OBJECTIVE This article reviewed existing evidence supporting the anticancer effects of Rh2 to classify and conclude previous and current knowledge on the mechanisms and therapeutic effects of Rh2, as well as to promote the clinical application of this natural product. CONCLUSION This article reviewed the anticancer efficacies and mechanisms of Rh2, including the induction of cell cycle arrest and programmed cell death, repression of metastasis, alleviation of drug resistance, and regulation of the immune system. Finally, this paper discussed the research and application prospects of Rh2.
Collapse
Affiliation(s)
- Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| |
Collapse
|
21
|
McMullen ER, Skala SL, Gonzalez ME, Djomehri S, Chandrashekar DS, Varambally S, Kleer CG. Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer 2020; 28:496-505. [PMID: 33247371 DOI: 10.1007/s12282-020-01189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metaplastic carcinoma is an aggressive, triple-negative breast cancer (TNBC) with differentiation towards squamous, spindle, or mesenchymal cell types. The molecular underpinnings of the histological subtypes are unclear. Our lab discovered a cytoplasmic function of EZH2, a transcriptional repressor, whereby pEZH2 T367 binds to cytoplasmic proteins in TNBC cells and enhances invasion and metastasis. Here, we investigated the expression and subcellular localization of pEZH2 T367 protein in metaplastic carcinomas. METHODS Thirty-five metaplastic carcinomas (17 squamous, 10 mesenchymal, and 8 spindle) were evaluated and immunostained with anti-pEZH2 T367. We analyzed staining intensity (score 1-4), subcellular localization (nuclear/cytoplasmic), and localization within the tumor (center/invasive edge). Protein expression of pEZH2 T367-binding partners was measured from a quantitative multiplex proteomics analysis performed in our lab. RESULTS Cytoplasmic pEZH2 T367 was significantly upregulated in squamous (14 of 17, 82%) compared to mesenchymal (4 of 10, 40%) and spindle (2 of 6, 33%) subtypes (p = 0.011). Twenty-five of 34 (73%) tumors with available tumor-normal interface showed accentuated cytoplasmic pEZH2 T367 at the infiltrative edge. Cytoplasmic pEZH2 T367 was upregulated in 9 of 10 (90%) tumors with lymph node metastasis (p = 0.05). Bioinformatics analyses identified an EZH2 protein network in metaplastic carcinomas (p value: < 1.0e-16). Using quantitative proteomics, we found significantly increased expression of cytoplasmic EZH2-binding partners in squamous compared to spindle and mesenchymal subtypes. CONCLUSIONS pEZH2 T367 expression and subcellular localization may be useful to distinguish metaplastic carcinoma subtypes. pEZH2 T367 may play a role in the histological diversity and behavior of these tumors.
Collapse
Affiliation(s)
- Emily R McMullen
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Stephanie L Skala
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sabra Djomehri
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darshan Shimoga Chandrashekar
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Sooryanarayana Varambally
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,The Informatics Institute, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Liu Y, Wang J, Qiao J, Liu S, Wang S, Zhao D, Bai X, Liu M. Ginsenoside Rh2 inhibits HeLa cell energy metabolism and induces apoptosis by upregulating voltage‑dependent anion channel 1. Int J Mol Med 2020; 46:1695-1706. [PMID: 33000213 PMCID: PMC7521551 DOI: 10.3892/ijmm.2020.4725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
20(S)‑Ginsenoside Rh2 [20(S)‑GRh2], one of the main active components of Panax ginseng, induces apoptosis in a wide range of cancer cell types. The present study found that 20(S)‑GRh2 reduces mitochondrial membrane potential, decreases adenosine triphosphate generation and induces reactive oxygen species in HeLa cervical cancer cells. In addition, 20(S)‑GRh2 activated mitochondrion‑dependent apoptosis and inhibited both mitochondrial oxidative phosphorylation and glycolysis in HeLa cells. It was found that voltage‑dependent anion channel 1 (VDAC1) expression was significantly upregulated by 20(S)‑GRh2 treatment, while hexokinase 2 expression was downregulated and segregated from the mitochondria. Furthermore, 20(S)‑GRh2 promoted Bax transport from the cytoplasm to the mitochondria, and knockdown of VDAC1 inhibited Bax transport and apoptosis. These results suggest that VDAC1 is a novel target of 20(S)‑GRh2. The present study provides a better understanding of the mechanistic link between cervical cancer metabolism and growth control, and these results may facilitate the development of new treatments for cervical cancer.
Collapse
Affiliation(s)
- Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
23
|
Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020; 34:e22597. [PMID: 32762018 DOI: 10.1002/jbt.22597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Ginsenoside Rh2 is a primary bioactive compound obtained from ginseng that indicated anticancer activities against several malignant tumors. However, previous studies have reported little about the inhibitory effect of Rh2 on osteosarcoma (OS). This study aims to explore whether Rh2 could exert anticancer effects in OS cells and further investigate the proliferation, migration, and apoptosis mechanisms induced by Rh2 in human OS U20S cell line. The viability of U20S cells was obtained by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell migration property was analyzed by wound-healing assay. Apoptosis was visualized using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and annexin V/propidium iodide (PI) staining. Relative protein expressed was confirmed through Western blot analysis. Mitochondrial membrane potential was evaluated by JC-1 staining. In this study, we used broad-spectrum anticancer drug cisplatin (CP) as a positive control. The results indicated that Rh2 remarkably inhibited cell viability of U20S cells in a dose- and time-dependent manner, and suppressed migration. TUNEL, DAPI, annexin V/PI, and JC-1 assay suggested that Rh2 could induce cellular apoptosis. Rh2 could reduce the levels of Bcl-2, caspase 3, and caspase 9, and promote the expression level of Bax in U20S cells. Moreover, Rh2 could induce apoptosis by promoting mitogen-activated protein kinase (MAPK) signaling pathway and inhibit PI3K/Akt/mTOR and nuclear factor-κB (NF-κB) signaling pathway in U20S cells. These findings indicated that Rh2 has an anticancer effect on U20S cells by regulating MAPK, PI3K/Akt/mTOR, and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Feng
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Chuyao Bi
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
25
|
Xia T, Zhang B, Li Y, Fang B, Zhu X, Xu B, Zhang J, Wang M, Fang J. New insight into 20(S)-ginsenoside Rh2 against T-cell acute lymphoblastic leukemia associated with the gut microbiota and the immune system. Eur J Med Chem 2020; 203:112582. [PMID: 32682197 DOI: 10.1016/j.ejmech.2020.112582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy associated with unfavorable factors including male gender and over nine years of age. Chemotherapy toxicity continues to present a major challenge. There is a need to develop novel natural agents to improve survival and quality of life in patients with T-ALL. 20(S)-ginsenoside Rh2 (GRh2) exhibits immune regulation and anti-tumor effects in both cellular and murine xenograft models. In the present study, the anti-cancer mechanisms of 20(S)-GRh2 involved in the immune system and intestinal microbiota were investigated in T-ALL mice. We revealed that 20(S)-Rh2 suppressed T-ALL by blocking the PI3K/Akt/mTOR signaling pathway, and enhanced immunity in the spleen by regulating immune factors. In addition, 20(S)-GRh2 altered the composition of the gut microbiota, and promoted intestinal homeostasis by elevating the levels of tight junction proteins, antimicrobial peptides and IgA. 20(S)-GRh2 ameliorated the LPS-induced inflammatory response in the intestine of T-ALL mice. Furthermore, Bacteroidetes, Verrucomicrobia, Akkermansia, Lactobacillus, and Lachnospiraceae_NK4A136_group were positively correlated with anti-tumor immune factors, intestinal barrier-related factors, and the anti-inflammatory response. Conversely, Firmicutes, Proteobacteria, Parabacteroides and Alistipes had the opposite correlation. Collectively, these results suggest that 20(S)-GRh2 is a safe and effective natural product, that shows promise for the prevention and treatment of T-ALL.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Bin Fang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaoxuan Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Bicheng Xu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guang Dong, 510120, PR China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, Guang Dong, 510120, PR China.
| |
Collapse
|
26
|
Yang D, Li X, Zhang X. Ginsenoside Rh2 induces DNA damage and autophagy in vestibular schwannoma is dependent of LAMP2 transcriptional suppression. Biochem Biophys Res Commun 2020; 522:300-307. [PMID: 31771882 DOI: 10.1016/j.bbrc.2019.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023]
Abstract
Ginsenoside Rh2 (G-Rh2), a component of ginseng extraction, exerted anti-tumor property in the occurrence and progress of human tumors. Vestibular schwannoma (VS) is a kind of benign tumor. Extraction of traditional Chinese herb has been applied to treat VS as adjuvant therapy. Nevertheless, G-Rh2-related molecular mechanisms in VS progress are not yet clear. The purpose of current study is to unveil the function and potential molecular mechanism of Rh2 in VS cellular functions. At first, the viability and apoptosis of VS cells treated with different concentrations of Rh2 were assessed. Autophagy and DNA damage response can be induced by multiple drugs. Here, we observed the changes of autophagy and DNA damage in Rh2-induced VS cells. Based on the experimental data, treatment with Rh2 contributed to cell apoptosis by inducing DNA damage and suppressing DNA damage. LAMP2 (lysosomal associated membrane protein 2), an autophagy inducer, was downregulated in Rh2-treated VS cells. Through mechanism study, we determined that Rh2 led to the transcriptional inactivation of LAMP2 by downregulating its transcription activator NR2F2 (nuclear receptor subfamily 2 group F member 2). In addition, NR2F2 overexpression recovered the role of Rh2 in cell functions, which was further rescued by the silence of LAMP2. Collectively, our study unveiled a novel NR2F2/LAMP2 axis in Rh2-mediated VS cells, which potentially contributes to the therapy for VS.
Collapse
Affiliation(s)
- Dong Yang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xin Li
- Department of Otorhinolaryngology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No.168 Litang Road, Changping District, Beijing, 102218, China.
| | - Xiaoyan Zhang
- Department of Allergy, The First Hospital of Qinhuangdao City, No.258 Cultural Road, Qinhuangdao, 066000, Hebei, China
| |
Collapse
|
27
|
Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev 2020; 52:125-138. [PMID: 31984805 DOI: 10.1080/03602532.2020.1714645] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.
Collapse
Affiliation(s)
- Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, Hunan, PR China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Junjia Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Xiaonv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| |
Collapse
|
28
|
Zhang J, Li W, Yuan Q, Zhou J, Zhang J, Cao Y, Fu G, Hu W. Transcriptome Analyses of the Anti-Proliferative Effects of 20(S)-Ginsenoside Rh2 on HepG2 Cells. Front Pharmacol 2019; 10:1331. [PMID: 31780945 PMCID: PMC6855211 DOI: 10.3389/fphar.2019.01331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
20(S)-ginsenoside Rh2 (Rh2), a well-known protopanaxadiol-type ginsenoside from Panax ginseng has especially gained attention for its anticancer activities on various types of human cancer cells. However, the molecular mechanism through which Rh2 promotes apoptosis in hepatocellular carcinoma (HePG2) cells is not known at the transcriptome level. Rh2 can specifically inhibit the proliferation of HePG2 in a dose- and time-dependent manner. Moreover, Rh2 can significantly increase the apoptosis which was related with an increase in protein expression levels of caspase-3, caspase-6, and poly (ADP-ribose) polymerase. Comparison of RNA-seq transcriptome profiles from control group and Rh2-treated group yielded a list of 2116 genes whose expression was significantly affected, which includes 971 up-regulated genes and 1145 down-regulated genes. The differentially expressed genes in p53 signaling pathway and DNA replication may have closely relationships to the cells apoptosis caused by Rh2 treatment. The results of qPCR validation showed that dynamic changes in mRNA, such as CDKN1A, CCND2, PMAIP1, GTSE1, and TP73.
Collapse
Affiliation(s)
- Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Weibo Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Qiaoyun Yuan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jianmei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
29
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
30
|
Jeong D, Ham J, Park S, Kim HW, Kim H, Ji HW, Kim SJ. Ginsenoside Rh2 Suppresses Breast Cancer Cell Proliferation by Epigenetically Regulating the Long Noncoding RNA C3orf67-AS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1643-1658. [PMID: 31645124 DOI: 10.1142/s0192415x19500848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ginsenoside Rh2, a major bioactive ingredient abundant in red ginseng, has an antiproliferative effect on various cancer cells. In this study, we report a novel long noncoding RNA, C3orf67-AS1, which was identified as being hypermethylated at a CpG site of the promoter by Rh2 in MCF-7 cancer cells. Rh2-induced hypermethylation was responsible for the lower gene expression; the expression was recovered following treatment with a methyltransferase inhibitor, 5-aza-2'-deoxycytidine. When C3orf67-AS1 was downregulated by a siRNA, the cell growth rate was decreased, demonstrating the RNA's oncogenic activity. Accordingly, breast cancer patients showed a lower methylation and higher expression level of C3orf67-AS1. Within 800 kb flanking C3orf67-AS1 on the chromosome, eight genes were found, and four genes including C3orf67 (the sense strand gene of C3orf67-AS1) were downregulated by Rh2. In particular, C3orf67 was downregulated when C3orf67-AS1 was suppressed by a siRNA; however, the expression of C3orf67-AS1 was not affected by C3orf67. Taken together, this study identifies a novel noncoding RNA, C3orf67-AS1, of which the expression could be suppressed by Rh2 via promoter methylation, thereby mediating the anti-proliferative effect of the ginsenoside.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Heejoo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
31
|
Yan H, Jin H, Fu Y, Yin Z, Yin C. Production of Rare Ginsenosides Rg3 and Rh2 by Endophytic Bacteria from Panax ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8493-8499. [PMID: 31310523 DOI: 10.1021/acs.jafc.9b03159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ginsenosides Rh2 and Rg3 induce tumor cell apoptosis, inhibit tumor cell proliferation, and restrain tumor invasion and metastasis. Despite Rh2 and Rg3 having versatile pharmacological activities, contents of them in natural ginseng are extremely low. To produce ginsenosides Rh2 and Rg3, the saponin-producing capacity of endophytic bacteria isolated from Panax ginseng was investigated. In this work, 81 endophytic bacteria isolates were taken from ginseng roots by tissue separation methods. Among them, strain PDA-2 showed the highest capacity to produce the rare ginsenosides; the concentrations of rare ginsenosides Rg3 and Rh2 reached 62.20 and 18.60 mg/L, respectively. On the basis of phylogenetic analysis, it was found that strain PDA-2 belongs to the genus Agrobacterium and was very close to Agrobacterium rhizogenes.
Collapse
Affiliation(s)
- Huayu Yan
- Department of Chemistry , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Huding Jin
- Graduate School of Convergence Science and Technology , Seoul National University , Seoul 151-742 , South Korea
| | - Yu Fu
- Department of Chemistry , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
- College of Chemistry and Life Science , Anshan Normal University , Anshan , Liaoning 114007 , People's Republic of China
| | - Zhenxing Yin
- Department of Chemistry , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Chengri Yin
- Department of Chemistry , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| |
Collapse
|
32
|
Jeong Y, Ku S, You HJ, Ji GE. A stereo-selective growth inhibition profile of ginsenoside Rh2 on human colon cancer cells. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1607562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yunju Jeong
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Seockmo Ku
- Research Center, BIFIDO Co., Ltd., Hongcheon, Korea
| | - Hyun Ju You
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
33
|
Zheng YF, Lu X, Zhang XY, Guan BG. The landscape of DNA methylation in hepatocellular carcinoma. J Cell Physiol 2018; 234:2631-2638. [PMID: 30145793 DOI: 10.1002/jcp.27077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022]
Abstract
Better understanding of the relationship between changes in the overall methylation status of hepatocellular carcinoma (HCC) and disease progression will help us find good strategies for the early detection and treatment of HCC patients. The purpose of the study was to study the relations between the methylation status changes in HCC patients and progression of the disease to enable early detection and treatment of HCC patients. First, the DNA methylation data of 50 HCC samples and the surrounding normal samples were extracted and the change pattern of methylation status in the DNA promoter region of HCC samples against that of normal samples was studied. Then, some DNA methylation genes that could accurately identify cancer and cancer-adjacent tissues were identified using the k-top scoring pair method. Also, a prognostic signature that could predict the survival of HCC patients was constructed based on the overall survival time and death information of the early HCC patients. Finally, the obtained prognostic signature was verified. In conclusion, this study described the changes in the methylation spectrum during the development of HCC and identified genes associated with HCC progression and prognosis, which may offer new opportunities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yong-Fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Lu
- Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Bu-Gao Guan
- Department of General Surgery, People's Hospital of Jinhu, Huai'an, China
| |
Collapse
|
34
|
Yi SA, Lee J, Park SK, Kim JY, Park JW, Lee MG, Nam KH, Park JH, Oh H, Kim S, Han J, Kim BK, Jo DG, Han JW. Fermented ginseng extract, BST204, disturbs adipogenesis of mesenchymal stem cells through inhibition of S6 kinase 1 signaling. J Ginseng Res 2018; 44:58-66. [PMID: 32148390 PMCID: PMC7033330 DOI: 10.1016/j.jgr.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background The biological and pharmacological effects of BST204, a fermented ginseng extract, have been reported in various disease conditions. However, its molecular action in metabolic disease remains poorly understood. In this study, we identified the antiadipogenic activity of BST204 resulting from its inhibition of the S6 kinase 1 (S6K1) signaling pathway. Methods The inhibitory effects of BST204 on S6K1 signaling were investigated by immunoblot, nuclear fractionation, immunoprecipitation analyses. The antiadipogenic effect of BST204 was evaluated by measuring mRNA levels of adipogenic genes and by chromatin immunoprecipitation and quantitative real-time polymerase chain reaction analysis. Results Treatment with BST204 inhibited activation and nuclear translocation of S6K1, further decreasing the interaction between S6K1 and histone H2B in 10T1/2 mesenchymal stem cells. Subsequently, phosphorylation of H2B at serine 36 (H2BS36p) by S6K1 was reduced by BST204, inducing an increase in the mRNA expression of Wnt6, Wnt10a, and Wnt10b, which disturbed adipogenic differentiation and promoted myogenic and early osteogenic gene expression. Consistently, BST204 treatment during adipogenic commitment suppressed the expression of adipogenic marker genes and lipid drop formation. Conclusion Our results indicate that BST204 blocks adipogenesis of mesenchymal stem cells through the inhibition of S6K1-mediated histone phosphorylation. This study suggests the potential therapeutic strategy using BST204 to combat obesity and musculoskeletal diseases.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Kyu Park
- Research Institute, Green Cross WellBeing, Seongnam, Republic of Korea
| | - Jeom Yong Kim
- Research Institute, Green Cross WellBeing, Seongnam, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saetbyul Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo Kyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|