1
|
Rullo L, Caputi FF, Losapio LM, Morosini C, Posa L, Canistro D, Vivarelli F, Romualdi P, Candeletti S. Effects of Different Opioid Drugs on Oxidative Status and Proteasome Activity in SH-SY5Y Cells. Molecules 2022; 27:8321. [PMID: 36500414 PMCID: PMC9738452 DOI: 10.3390/molecules27238321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as β2 and β5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in β2(trypsin-like) and β5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and β5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University, 700 Albany Street, Boston, MA 02118, USA
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
2
|
Wtorek K, Ghidini A, Gentilucci L, Adamska-Bartłomiejczyk A, Piekielna-Ciesielska J, Ruzza C, Sturaro C, Calò G, Pieretti S, Kluczyk A, McDonald J, Lambert DG, Janecka A. Synthesis, Biological Activity and Molecular Docking of Chimeric Peptides Targeting Opioid and NOP Receptors. Int J Mol Sci 2022; 23:12700. [PMID: 36293553 PMCID: PMC9604311 DOI: 10.3390/ijms232012700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Recently, mixed opioid/NOP agonists came to the spotlight for their favorable functional profiles and promising outcomes in clinical trials as novel analgesics. This study reports on two novel chimeric peptides incorporating the fragment Tyr-c[D-Lys-Phe-Phe]Asp-NH2 (RP-170), a cyclic peptide with high affinity for µ and κ opioid receptors (or MOP and KOP, respectively), conjugated with the peptide Ac-RYYRIK-NH2, a known ligand of the nociceptin/orphanin FQ receptor (NOP), yielding RP-170-RYYRIK-NH2 (KW-495) and RP-170-Gly3-RYYRIK-NH2 (KW-496). In vitro, the chimeric KW-496 gained affinity for KOP, hence becoming a dual KOP/MOP agonist, while KW-495 behaved as a mixed MOP/NOP agonist with low nM affinity. Hence, KW-495 was selected for further in vivo experiments. Intrathecal administration of this peptide in mice elicited antinociceptive effects in the hot-plate test; this action was sensitive to both the universal opioid receptor antagonist naloxone and the selective NOP antagonist SB-612111. The rotarod test revealed that KW-495 administration did not alter the mice motor coordination performance. Computational studies have been conducted on the two chimeras to investigate the structural determinants at the basis of the experimental activities, including any role of the Gly3 spacer.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Alessia Ghidini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - John McDonald
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - David G. Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Li Z, Peng X, Jia X, Su P, Liu D, Tu Y, Xu Q, Gao F. Spinal heat shock protein 27 participates in PDGFRβ-mediated morphine tolerance through PI3K/Akt and p38 MAPK signalling pathways. Br J Pharmacol 2020; 177:5046-5062. [PMID: 32559815 PMCID: PMC7589020 DOI: 10.1111/bph.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The development of antinociceptive morphine tolerance is a clinically intractable problem. Earlier work has demonstrated the pivotal roles of PDGF and its receptor PDGFRβ in morphine tolerance. Here, we have investigated the role of spinal heat shock protein 27 (HSP27) in morphine tolerance and its relationship with PDGFRβ activation. EXPERIMENTAL APPROACH Rats were treated with morphine for 9 days, and its anti-nociceptive effect against thermal pain was evaluated by a tail-flick latency test. Western blot, real-time PCR, immunofluorescent staining, and various antagonists, agonists, and siRNA lentiviral vectors elucidated the roles of HSP27, PDGFRβ, and related signalling pathways in morphine tolerance. KEY RESULTS Chronic morphine administration increased expression and phosphorylation of HSP27 in the spinal cord. Down-regulating HSP27 attenuated the development of morphine tolerance. PDGFRβ antagonism inhibited HSP27 activation and attenuated and reversed morphine tolerance. PDGFRβ induction increased HSP27 expression and activation and partly decreased morphine analgesia. PDGFRβ inhibition reduced Akt and p38 MAPK activity in morphine tolerance. PI3K and p38 inhibitors reversed morphine tolerance and suppressed morphine-induced HSP27 phosphorylation. CONCLUSION AND IMPLICATIONS This study demonstrated for the first time that spinal HSP27 participates in PDGFRβ-mediated morphine tolerance via the PI3K/Akt and p38 MAPK signalling pathways. These findings suggest a potential clinical strategy for prolonging the antinociceptive effects of opioids during long-term pain control.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Peng Su
- Department of Anesthesiology, Sichuan Academy of Medical SciencesSichuan Provincial People's HospitalChengduChina
| | - Daiqiang Liu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Ye Tu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoqiao Xu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Machelska H, Celik MÖ. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front Immunol 2020; 11:300. [PMID: 32194554 PMCID: PMC7064637 DOI: 10.3389/fimmu.2020.00300] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Opioid receptors comprise μ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ (NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four opioid receptors in neurons can induce analgesia in animal models, but the most clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also affect the function of immune cells, and their actions in relation to immunosuppression and infections have been widely discussed. Here, we analyze the expression and the role of opioid receptors in peripheral immune cells and glia in the modulation of pain. All four opioid receptors have been identified at the mRNA and protein levels in immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was recently reported to attenuate pain after nerve injury in mice. This involved intracellular Ca2+-regulated release of opioid peptides from immune cells, which subsequently activated MOP, DOP, and KOP receptors on peripheral neurons. There is no evidence of pain modulation by leukocyte NOP receptors. More good quality studies are needed to verify the presence of DOP, KOP, and NOP receptors in native glia. Although still questioned, MOP receptors might be expressed in brain or spinal cord microglia and astrocytes in humans, mice, and rats. Morphine acting at spinal cord microglia is often reported to induce hyperalgesia in rodents. However, most studies used animals without pathological pain and/or unconventional paradigms (e.g., high or ultra-low doses, pain assessment after abrupt discontinuation of chronic morphine treatment). Therefore, the opioid-induced hyperalgesia can be viewed in the context of dependence/withdrawal rather than pain management, in line with clinical reports. There is convincing evidence of analgesic effects mediated by immune cell-derived opioid peptides in animal models and in humans. Together, MOP, DOP, and KOP receptors, and opioid peptides in immune cells can ameliorate pathological pain. The relevance of NOP receptors and N/OFQ in leukocytes, and of all opioid receptors, opioid peptides and N/OFQ in native glia for pain control is yet to be clarified.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Caputi FF, Romualdi P, Candeletti S. Regulation of the Genes Encoding the ppN/OFQ and NOP Receptor. Handb Exp Pharmacol 2019; 254:141-162. [PMID: 30689088 DOI: 10.1007/164_2018_196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the years, the ability of N/OFQ-NOP receptor system in modulating several physiological functions, including the release of neurotransmitters, anxiety-like behavior responses, modulation of the reward circuitry, inflammatory signaling, nociception, and motor function, has been examined in several brain regions and at spinal level. This chapter collects information related to the genes encoding the ppN/OFQ and NOP receptor, their regulation, and relative transcriptional control mechanisms. Furthermore, genetic manipulations, polymorphisms, and epigenetic alterations associated with different pathological conditions are discussed. The evidence here collected indicates that the study of ppN/OFQ and NOP receptor gene expression may offer novel opportunities in the field of personalized therapies and highlights this system as a good "druggable target" for different pathological conditions.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Tzschentke TM, Linz K, Koch T, Christoph T. Cebranopadol: A Novel First-in-Class Potent Analgesic Acting via NOP and Opioid Receptors. Handb Exp Pharmacol 2019; 254:367-398. [PMID: 30927089 DOI: 10.1007/164_2019_206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cebranopadol is a novel first-in-class analgesic with highly potent agonistic activity at nociceptin/orphanin FQ peptide (NOP) and opioid receptors. It is highly potent and efficacious across a broad range of preclinical pain models. Its side effect profile is better compared to typical opioids. Mechanistic studies have shown that cebranopadol's activity at NOP receptors contributes to its anti-hyperalgesic effects while ameliorating some of its opioid-type side effects, including respiratory depression and abuse potential. Phase II of clinical development has been completed, demonstrating efficacy and good tolerability in acute and chronic pain conditions.This article focusses on reviewing data on the preclinical in vitro and in vivo pharmacology, safety, and tolerability, as well as clinical trials with cebranopadol.
Collapse
Affiliation(s)
| | - Klaus Linz
- Grünenthal GmbH, Global Innovation, Aachen, Germany
| | - Thomas Koch
- Grünenthal GmbH, Global Innovation, Aachen, Germany
| | | |
Collapse
|