1
|
Łażewska D, Kieć-Kononowicz K. Histamine H 3 receptor antagonists/inverse agonists: a patent review (October 2017 - December 2023) documenting progress. Expert Opin Ther Pat 2025:1-25. [PMID: 39757430 DOI: 10.1080/13543776.2024.2446227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Histamine H3 receptor antagonists/inverse agonists, since the discovery of histamine H3 receptor (H3R), are important ligands in the search for new potential drugs. The most interesting are CNS diseases as these receptors are mainly there present. AREAS COVERED The current review covers patent applications/patents that were published during the last 6 years (October 2017 - December 2023). Documents were found in two free available patent databases: Espacenet and PatentScope and divided into three basic categories such as methods, compounds, and therapeutic indications. It provides an overview of 51 patent applications/patents. Many pharmaceutical compositions with H3R antagonists/inverse agonists have been claimed. Furthermore, PubMed, Scopus, and ClinicalTrials databases were searched for literature to prepare this review. EXPERT OPINION Interest in the H3R field is still high and has remained almost unchanged over the last 10 years in the number of publications, but the type of publications has changed (fewer new ligands, more pharmacological studies). Currently, the search for new H3R ligands is focused on multi-target compounds. The first crystal structure of H3R with a ligand appeared. New therapeutic indications, such as autism, fatigue, and Prader-Willi syndrome, are verified in clinical trials.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Sgambellone S, Khanfar MA, Marri S, Villano S, Nardini P, Frank A, Reiner-Link D, Stark H, Lucarini L. Histamine H 3 receptor antagonist/nitric oxide donors as novel promising therapeutic hybrid-tools for glaucoma and retinal neuroprotection. Biomed Pharmacother 2024; 180:117454. [PMID: 39321511 DOI: 10.1016/j.biopha.2024.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma is a degenerative optic neuropathy in which the degeneration of optic nerve and blindness occur. The main cause is a malfunction of ciliary processes (protrusions of the ciliary bodies) resulting in increased intraocular pressure (IOP). Ocular hypertension (OHT) causes ischemic events leading to retinal ganglion cell (RGC) depletion and blindness. Histaminergic and nitrergic systems are involved in the regulation of IOP. Therefore, we developed novel hybrid compounds that target histamine H3 receptor (H3R) with nitric oxide (NO) releasing features (ST-1989 and ST-2130). After H3R binding was proven in vitro, we investigated their effects in two OHT models in New Zealand White rabbits. Compound ST-1989 showed the highest NO elevation, together with antioxidative and anti-inflammatory features partly superior to the co-administered H3R antagonist (ciproxifan) and NO donor (molsidomine). This hybrid compound demonstrated IOP reduction in both OHT models induced by intravitreal injection of hypertonic saline and carbomer into the anterior chamber of the eye, respectively. Ocular perfusion and photoreceptor neuroprotection were evaluated in a model of ischemia/reperfusion (I/R) of the ophthalmic artery induced by repeated sub-tenon injections of endothelin-1 (ET-1), twice a week for six weeks. Compound ST-1989 counteracts retinal degeneration reducing ophthalmic artery resistance index and increasing photoreceptor responses, thus rescuing RGCs. Our results indicate that compound ST-1989 is a promising molecule with long-lasting hypotensive effects and good effectiveness in reducing inflammation, oxidative stress, and RGCs apoptosis. In conclusion, these hybrid compounds could be a novel strategy to combat glaucomatous blindness and RGC depletion for ocular diseases involving retinal damage.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Mohammad A Khanfar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
4
|
Hua Y, Song M, Guo Q, Luo Y, Deng X, Huang Y. Antiseizure Properties of Histamine H 3 Receptor Antagonists Belonging 3,4-Dihydroquinolin-2(1 H)-Ones. Molecules 2023; 28:molecules28083408. [PMID: 37110645 PMCID: PMC10144301 DOI: 10.3390/molecules28083408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
H3R is becoming an attractive and promising target for epilepsy treatment as well as the discovery of antiepileptics. In this work, a series of 6-aminoalkoxy-3,4-dihydroquinolin-2(1H)-ones was prepared to screen their H3R antagonistic activities and antiseizure effects. The majority of the target compounds displayed a potent H3R antagonistic activity. Among them, compounds 2a, 2c, 2h, and 4a showed submicromolar H3R antagonistic activity with an IC50 of 0.52, 0.47, 0.12, and 0.37 μM, respectively. The maximal electroshock seizure (MES) model screened out three compounds (2h, 4a, and 4b) with antiseizure activity. Meanwhile, the pentylenetetrazole (PTZ)-induced seizure test gave a result that no compound can resist the seizures induced by PTZ. Additionally, the anti-MES action of compound 4a fully vanished when it was administrated combined with an H3R agonist (RAMH). These results showed that the antiseizure role of compound 4a might be achieved by antagonizing the H3R receptor. The molecular docking of 2h, 4a, and PIT with the H3R protein predicted their possible binding patterns and gave a presentation that 2h, 4a, and PIT had a similar binding model with H3R.
Collapse
Affiliation(s)
- Yi Hua
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Mingxia Song
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Qiaoyue Guo
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Yiqin Luo
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Xianqing Deng
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Ackermann TM, Höfner G, Wanner KT. Screening for New Inhibitors of Glycine Transporter 1 and 2 by Means of MS Binding Assays. ChemMedChem 2021; 16:3094-3104. [PMID: 34174033 PMCID: PMC8518836 DOI: 10.1002/cmdc.202100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/10/2022]
Abstract
A straightforward screening of a compound library comprising 2439 substances for the identification of new inhibitors for the neurotransmitter transporters GlyT1 and GlyT2 is described. Screening and full-scale competition experiments were performed using recently developed GlyT1 and GlyT2 MS Binding Assays. That way for both targets, GlyT1 and GlyT2, ligands were identified, which exhibited affinities (pKi values) in the low micromolar to sub-micromolar range. The majority of these binders exhibit new chemical scaffolds in the class of GlyT1 and GlyT2 inhibitors, which could be of interest for the development of new ligands with improved affinities for the target proteins. Additionally, compounds with excellent fluorescent properties were found for GlyT2, which renders them promising compounds for future fluorescence-based techniques. All in all, this study demonstrates that MS Binding Assays represent a powerful technology platform also well suited for the screening of compound libraries in a highly reliable and effective manner.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy – Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
6
|
Falkenstein M, Elek M, Stark H. Chemical Probes for Histamine Receptor Subtypes. Curr Top Behav Neurosci 2021; 59:29-76. [PMID: 34595743 DOI: 10.1007/7854_2021_254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| |
Collapse
|
7
|
|
8
|
Novel compounds with dual S1P receptor agonist and histamine H 3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology 2021; 186:108464. [PMID: 33460688 DOI: 10.1016/j.neuropharm.2021.108464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.
Collapse
|
9
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
10
|
Reiner D, Seifert L, Deck C, Schüle R, Jung M, Stark H. Epigenetics meets GPCR: inhibition of histone H3 methyltransferase (G9a) and histamine H 3 receptor for Prader-Willi Syndrome. Sci Rep 2020; 10:13558. [PMID: 32782417 PMCID: PMC7419559 DOI: 10.1038/s41598-020-70523-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
The role of epigenetic regulation is in large parts connected to cancer, but additionally, its therapeutic claim in neurological disorders has emerged. Inhibition of histone H3 lysine N-methyltransferase, especially G9a, has been recently shown to restore candidate genes from silenced parental chromosomes in the imprinting disorder Prader-Willi syndrome (PWS). In addition to this epigenetic approach, pitolisant as G-protein coupled histamine H3 receptor (H3R) antagonist has demonstrated promising therapeutic effects for Prader-Willi syndrome. To combine these pioneering principles of drug action, we aimed to identify compounds that combine both activities, guided by the pharmacophore blueprint for both targets. However, pitolisant as selective H3R inverse agonist with FDA and EMA-approval did not show the required inhibition at G9a. Pharmacological characterization of the prominent G9a inhibitor A-366, that is as well an inhibitor of the epigenetic reader protein Spindlin1, revealed its high affinity at H3R while showing subtype selectivity among subsets of the histaminergic and dopaminergic receptor families. This work moves prominent G9a ligands forward as pharmacological tools to prove for a potentially combined, symptomatic and causal, therapy in PWS by bridging the gap between drug development for G-protein coupled receptors and G9a as an epigenetic effector in a multi-targeting approach.
Collapse
Affiliation(s)
- David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ludwig Seifert
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Caroline Deck
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Roland Schüle
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
11
|
Reiner D, Zivkovic A, Labeeuw O, Krief S, Capet M, Stark H. Novel pyrrolidinone derivative lacks claimed histamine H 3 receptor stimulation in receptor binding and functional studies. Eur J Med Chem 2020; 191:112150. [PMID: 32105981 DOI: 10.1016/j.ejmech.2020.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 11/28/2022]
Abstract
Since the discovery and early characterization of the histamine H3 receptor (H3R) in the 1980's, predominantly imidazole-based agonists were presented to the scientific community such as Nα-methylhistamine (Nα-MeHA) or (R)-α-methylhistamine ((R)α-MeHA). Whereas therapeutic applications have been prompted for H3R agonists such as treatment of pain, asthma and obesity, several drawbacks associated with imidazole-containing ligands makes the search for new agonists for this receptor demanding. Accordingly, high interest arose after publication of several pyrrolidindione-based, highly affine H3R agonists within this journal that avoid the imidazole moiety and thus, presenting a novel type of potential pharmacophores (Ghoshal, Anirban et al., 2018). In our present study performed in two independent laboratories, we further evaluated the exposed lead-compound (EC50 = 0.1 nM) of the previous research project with regards to pharmacological behavior at H3R. Thereby, no binding affinity was observed in neither [3H]Nα-MeHA nor bodilisant displacement assays that contradicts the previously published activity. Additional functional exploration employing GTPγ[35S], cAMP-accumulation assay and cAMP response element (CRE)-driven reporter gene assays exhibited slight partial agonist properties of such pyrrolidindiones but acting apart from the reported concentration range. We conclude, that the previously reported actions of such pyrrolidindiones result from an overestimation based on the method of measurement and thus, we cast doubt on the new pharmacophores with H3R agonist activity.
Collapse
Affiliation(s)
- David Reiner
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Aleksandra Zivkovic
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Olivier Labeeuw
- Bioprojet Biotech, 4 Rue du Chesnay Beauregard, 35760, Saint-Grégoire, France
| | - Stéphane Krief
- Bioprojet Biotech, 4 Rue du Chesnay Beauregard, 35760, Saint-Grégoire, France
| | - Marc Capet
- Bioprojet Biotech, 4 Rue du Chesnay Beauregard, 35760, Saint-Grégoire, France
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
12
|
Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020; 177:978-991. [PMID: 31877233 DOI: 10.1111/bph.14953] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
In recent years, several novel aspects of GPCR pharmacology have been described, which are thought to play a role in determining the in vivo efficacy of a compound. Fluorescent ligands have been used to study many of these, which have also required the development of new experimental approaches. Fluorescent ligands offer the potential to use the same fluorescent probe to perform a broad range of experiments, from single-molecule microscopy to in vivo BRET. This review provides an overview of the in vitro use of fluorescent ligands in further understanding emerging pharmacological paradigms within the GPCR field, including ligand-binding kinetics, allosterism and intracellular signalling, along with the use of fluorescent ligands to study physiologically relevant therapeutic agents.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
13
|
Ghamari N, Zarei O, Arias-Montaño JA, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H 3 receptor antagonists/inverse agonists: Where do they go? Pharmacol Ther 2019; 200:69-84. [PMID: 31028835 DOI: 10.1016/j.pharmthera.2019.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Since the discovery of the histamine H3 receptor in 1983, tremendous advances in the pharmacological aspects of H3 receptor antagonists/inverse agonists have been accomplished in preclinical studies. At present, there are several drug candidates that reached clinical trial studies for various indications. However, entrance of these candidates to the pharmaceutical market is not free from challenges, and a variety of difficulties is engaged with their developmental process. In this review, the potential role of H3 receptors in the pathophysiology of various central nervous system, metabolic and allergic diseases is discussed. Thereafter, the current status for H3 receptor antagonists/inverse agonists in ongoing clinical trial studies is reviewed and obstacles in developing these agents are emphasized.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 Ciudad de México, México
| | - David Reiner
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|