1
|
Li Y, Sanchez Triviño CA, Hernandez A, Mortal S, Spada F, Krivosheia I, Franco N, Spelat R, Cesselli D, Manini I, Skrap M, Menini A, Cesca F, Torre V. Mechanisms of Glioblastoma Replication: Ca2+ Flares and Cl- Currents. Mol Cancer Res 2024; 22:852-863. [PMID: 38820126 DOI: 10.1158/1541-7786.mcr-23-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Glioblastoma (GBM) is amongst the deadliest types of cancers, with no resolutive cure currently available. GBM cell proliferation in the patient's brain is a complex phenomenon controlled by multiple mechanisms. The aim of this study was to determine whether the ionic fluxes controlling cell duplication could represent a target for GBM therapy. In this work, we combined multi-channel Ca2+ and Cl- imaging, optical tweezers, electrophysiology, and immunohistochemistry to describe the role of ion fluxes in mediating the cell volume changes that accompany mitosis of U87 GBM cells. We identified three main steps: (i) in round GBM cells undergoing mitosis, during the transition from anaphase to telophase and cytokinesis, large Ca2+ flares occur, reaching values of 0.5 to 1 μmol/L; (ii) these Ca2+ flares activate Ca2+-dependent Cl- channels, allowing the entry of Cl- ions; and (iii) to maintain osmotic balance, GBM cells swell to complete mitosis. This sequence of steps was validated by electrophysiological experiments showing that Cl- channels are activated either directly or indirectly by Ca2+, and by additional live-cell imaging experiments. Cl- channel blockers with different molecular structures, such as niflumic acid and carbenoxolone, blocked GBM replication by arresting GBM cells in a round configuration. These results describe the central role of Ca2+ flares and Cl- fluxes during mitosis and show that inhibition of Ca2+-activated Cl- channels blocks GBM replication, opening the way to new approaches for the clinical treatment of GBM. Implications: Our work identifies ionic fluxes occurring during cell division as targets for devising novel therapies for glioblastoma treatment.
Collapse
Affiliation(s)
- Yunzhen Li
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andres Hernandez
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Simone Mortal
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Federica Spada
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Ilona Krivosheia
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Nicoletta Franco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- International School for Advanced Studies (SISSA), Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Daniela Cesselli
- Department of Medicine, Institute of Pathology, University Hospital of Udine, University of Udine, Udine, Italy
| | - Ivana Manini
- Department of Medicine, Institute of Pathology, University Hospital of Udine, University of Udine, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and Neuroscience Department, University Hospital of Udine, Udine, Italy
| | - Anna Menini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA), Trieste, Italy
- IOM-CNR, Trieste, Italy
- BISS GlioGuard S.r.l., Trieste, Italy
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P.R. China
| |
Collapse
|
2
|
Salmanzadeh H, Halliwell RF. Antiseizure properties of fenamate NSAIDs determined in mature human stem-cell derived neuroglial circuits. Front Pharmacol 2024; 15:1385523. [PMID: 38828453 PMCID: PMC11141243 DOI: 10.3389/fphar.2024.1385523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Repeated and uncontrolled seizures in epilepsy result in brain cell loss and neural inflammation. Current anticonvulsants primarily target ion channels and receptors implicated in seizure activity. Identification of neurotherapeutics that can inhibit epileptiform activity and reduce inflammation in the brain may offer significant benefits in the long-term management of epilepsy. Fenamates are unique because they are both non-steroidal anti-inflammatory drugs (NSAIDs) and highly subunit selective modulators of GABAA receptors. In the current study we have investigated the hypothesis that fenamates have antiseizure properties using mature human stem cell-derived neuro-glia cell cultures, maintained in long-term culture, and previously shown to be sensitive to first, second and third generation antiepileptics. Mefenamic acid, flufenamic acid, meclofenamic acid, niflumic acid, and tolfenamic acid (each tested at 10-100 μM) attenuated 4-aminopyridine (4-AP, 100 μM) evoked epileptiform activity in a dose-dependent fashion. These actions were as effective diazepam (3-30 μM) and up to 200 times more potent than phenobarbital (300-1,000 μM). The low (micromolar) concentrations of fenamates that inhibited 4-AP evoked epileptiform activity correspond to those reported to potentiate GABAA receptor function. In contrast, the fenamates had no effect on neural spike amplitudes, indicating that their antiseizure actions did not result from inhibition of sodium-channels. The antiseizure actions of fenamates were also not replicated by either of the two non-fenamate NSAIDs, ibuprofen (10-100 μM) or indomethacin (10-100 μM), indicating that inhibition of cyclooxygenases is not the mechanism through which fenamates have anticonvulsant properties. This study therefore shows for the first time, using functionally mature human stem cell-derived neuroglial circuits, that fenamate NSAIDs have powerful antiseizure actions independent of, and in addition to their well-established anti-inflammatory properties, suggesting these drugs may provide a novel insight and new approach to the treatment of epilepsy in the future.
Collapse
Affiliation(s)
| | - Robert F. Halliwell
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
3
|
Cao S, Ma H, Xu Z, Fang W, Huang J, Huang Y. Tiratricol, a thyroid hormone metabolite, has potent inhibitory activity against human dihydroorotate dehydrogenase. Chem Biol Drug Des 2023; 102:1-13. [PMID: 37088711 DOI: 10.1111/cbdd.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is a promising drug target for many diseases including autoimmune diseases, cancer, and viral infection. To develop more novel and potent hDHODH inhibitors, we screened our in-house library of old drugs. We found that tiratricol (3,3',5-triiodothyroacetic acid), a thyroid hormone metabolite, has potent hDHODH inhibitory activity (IC50 : 0.754 ± 0.126 μM), and its precursor tetrac (3,3',5,5'-tetraiodothyroacetic acid) also shows a certain inhibitory activity against hDHODH (IC50 : 11.960 ± 1.453 μM). Enzyme kinetic analysis shows that tiratricol and tetrac are noncompetitive inhibitors versus CoQ0 , which is different from the positive control A771726. ThermoFMN assay, molecular docking and site-directed mutagenesis all indicate that tiratricol and tetrac interact with more key residues of hDHODH than A771726, especially some hydrophobic residues in Subsite 1. In conclusion, our experiment results indicate a potential new use for the old drug, tiratricol, and provide a novel chemical scaffold for the design of hDHODH inhibitors.
Collapse
Affiliation(s)
- Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhaomin Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Huang
- Drug Inspection Technology, Guangdong Institute for Drug Control, Guangzhou, China
| |
Collapse
|
4
|
Stachowicz K, Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P. Changes in working memory induced by lipopolysaccharide administration in mice are associated with metabotropic glutamate receptors 5 and contrast with changes induced by cyclooxygenase-2: Involvement of postsynaptic density protein 95 and down syndrome cell adhesion molecule. Neuropeptides 2023; 100:102347. [PMID: 37182274 DOI: 10.1016/j.npep.2023.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The strength and quality of the signal propagated by the glutamate synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), mammalian target of rapamycin (mTOR), and Down syndrome cell adhesion molecule (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and NS398 (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to lipopolysaccharide (LPS) was monitored. MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto Street 2a, 35-310 Rzeszow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto Street 2a, 35-310 Rzeszow, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Maltsev DV, Spasov AA, Yakovlev DS, Vassiliev PM, Skripka MO, Miroshnikov MV, Sultanova KT, Kochetkov AN, Divaeva LN, Kuzmenko TA, Morkovnik AS. Searching for new anxiolytic agents among derivatives of 11-dialkylaminoethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazole. Eur J Pharm Sci 2021; 161:105792. [PMID: 33705965 DOI: 10.1016/j.ejps.2021.105792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
A study on the anxiolytic activity of the new derivatives of 11-dialkylaminoethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazole, containing privileged scaffolds of benzodiazepine and benzimidazole in their structure, was conducted. The cytotoxic properties of low levels of six compounds were preliminary determined in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. The screening of these substances for anxiolytic activity was conducted using elevated plus maze (EPM) test in vivo, and DAB-21 was found to be the most active compound. The acute toxicity of DAB-21 was determined as less toxic than that of diazepam. The dose-dependent effect of the most active compound revealed a minimum dose of 1.26 mg/kg, which resulted in the maximum counterphobic effect. The effect of DAB-21 was superior in a number of tests compared with that of diazepam, which indicated a high level of tranquilizing activity for DAB-21. The results of in silico docking analysis suggest that DAB-21 should have a slightly lower anxiolytic activity than diazepam, but should exhibit greater specific affinity for the benzodiazepine site of the GABAA receptor, in comparison with its GABA-binding site. The interaction between DAB-21 and flumazenil in terms of EPM verifies the GABAergic mechanism of action of DAB-21. Our results highlight the potential of 11-dialkylaminomethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazoles as promising compounds in the search for new highly effective anxiolytics.
Collapse
Affiliation(s)
- Dmitriy V Maltsev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia.
| | - Alexander A Spasov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Dmitriy S Yakovlev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Pavel M Vassiliev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Maria O Skripka
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Mikhail V Miroshnikov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Kira T Sultanova
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Andrey N Kochetkov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Lyudmila N Divaeva
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| | - Tatyana A Kuzmenko
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| | - Anatolii S Morkovnik
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| |
Collapse
|