1
|
Cao J, Chow L, Dow S. Strategies to overcome myeloid cell induced immune suppression in the tumor microenvironment. Front Oncol 2023; 13:1116016. [PMID: 37114134 PMCID: PMC10126309 DOI: 10.3389/fonc.2023.1116016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer progression and metastasis due to tumor immune evasion and drug resistance is strongly associated with immune suppressive cellular responses, particularly in the case of metastatic tumors. The myeloid cell component plays a key role within the tumor microenvironment (TME) and disrupts both adaptive and innate immune cell responses leading to loss of tumor control. Therefore, strategies to eliminate or modulate the myeloid cell compartment of the TME are increasingly attractive to non-specifically increase anti-tumoral immunity and enhance existing immunotherapies. This review covers current strategies targeting myeloid suppressor cells in the TME to enhance anti-tumoral immunity, including strategies that target chemokine receptors to deplete selected immune suppressive myeloid cells and relieve the inhibition imposed on the effector arms of adaptive immunity. Remodeling the TME can in turn improve the activity of other immunotherapies such as checkpoint blockade and adoptive T cell therapies in immunologically "cold" tumors. When possible, in this review, we have provided evidence and outcomes from recent or current clinical trials evaluating the effectiveness of the specific strategies used to target myeloid cells in the TME. The review seeks to provide a broad overview of how myeloid cell targeting can become a key foundational approach to an overall strategy for improving tumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jennifer Cao
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Kovacs AH, Zhao D, Hou J. Aurora B Inhibitors as Cancer Therapeutics. Molecules 2023; 28:3385. [PMID: 37110619 PMCID: PMC10144992 DOI: 10.3390/molecules28083385] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The Aurora kinases (A, B, and C) are a family of three isoform serine/threonine kinases that regulate mitosis and meiosis. The Chromosomal Passenger Complex (CPC), which contains Aurora B as an enzymatic component, plays a critical role in cell division. Aurora B in the CPC ensures faithful chromosome segregation and promotes the correct biorientation of chromosomes on the mitotic spindle. Aurora B overexpression has been observed in several human cancers and has been associated with a poor prognosis for cancer patients. Targeting Aurora B with inhibitors is a promising therapeutic strategy for cancer treatment. In the past decade, Aurora B inhibitors have been extensively pursued in both academia and industry. This paper presents a comprehensive review of the preclinical and clinical candidates of Aurora B inhibitors as potential anticancer drugs. The recent advances in the field of Aurora B inhibitor development will be highlighted, and the binding interactions between Aurora B and inhibitors based on crystal structures will be presented and discussed to provide insights for the future design of more selective Aurora B inhibitors.
Collapse
Affiliation(s)
- Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Dong Zhao
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
3
|
Li S, Liu C, Tang Y. Role of Fyn in hematological malignancies. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04608-2. [PMID: 36754870 DOI: 10.1007/s00432-023-04608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Tyrosine kinase Fyn is a member of the Src family of kinases. In addition to the wild type, three mRNA splice isoforms of Fyn have been identified; Fyn-B, Fyn-T, and Fyn-C. Fyn-T is highly expressed in T lymphocytes, and its expression level is significantly higher in mature T cells than in immature T cells. The abnormal expression of Fyn is closely related to the metabolism, proliferation, and migration of tumor cells. Recent studies have shown that Fyn is expressed in a variety of tumor tissues, and its expression and function vary among different tumors. In some tumors, Fyn acts as a pro-oncogene to promote tumor proliferation and metastasis. Moreover, Fyn mutations have been detected in many hematological tumors in recent years, suggesting a critical regulatory role of Fyn in the development of malignancies. METHODS This review analyzed the relevant literature in PubMed and other databases. PURPOSE The aim of this study was to systemically review recent research findings on various aspects of Fyn in the pathogenesis and treatment of different types of hematological malignancies and suggests possible future research directions for targeted tumor therapy. CONCLUSION Fyn could be a novel prognostic marker and therapeutic target. Treatment option targeting Fyn might be beneficial for future studies.
Collapse
Affiliation(s)
- Shan Li
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yunlian Tang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Preclinical Studies of Chiauranib Show It Inhibits Transformed Follicular Lymphoma through the VEGFR2/ERK/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 16:ph16010015. [PMID: 36678513 PMCID: PMC9865968 DOI: 10.3390/ph16010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Transformed follicular lymphoma (t-FL), for which there is no efficient treatment strategy, has a rapid progression, treatment resistance, and poor prognosis, which are the main reasons for FL treatment failure. In this study, we identified a promising therapeutic approach with chiauranib, a novel orally developed multitarget inhibitor targeting VEGFR/Aurora B/CSF-1R. We first determined the cytotoxicity of chiauranib in t-FL cell lines through CCK-8, EdU staining, flow cytometry, and transwell assays. We also determined the killing effect of chiauranib in a xenograft model. More importantly, we identified the underlying mechanism of chiauranib in t-FL tumorigenesis by immunofluorescence and Western blotting. Treatment with chiauranib significantly inhibited cell growth and migration, promoted apoptosis, induced cell cycle arrest in G2/M phase, and resulted in significant killing in vivo. Mechanistically, chiauranib suppresses the phosphorylation level of VEGFR2, which has an anti-t-FL effect by inhibiting the downstream MEK/ERK/STAT3 signaling cascade. In conclusion, chiauranib may be a potential therapy to treat t-FL, since it inhibits tumor growth and migration and induces apoptosis by altering the VEGFR2/ERK/STAT3 signaling pathway.
Collapse
|
5
|
Yuan D, Li G, Yu L, Jiang Y, Shi Y, Chen Q, Ma X, Pham LV, Young KH, Deng M, Fang Z, Xu B. CS2164 and Venetoclax Show Synergistic Antitumoral Activities in High Grade B-Cell Lymphomas With MYC and BCL2 Rearrangements. Front Oncol 2021; 11:618908. [PMID: 33777762 PMCID: PMC7988232 DOI: 10.3389/fonc.2021.618908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
High-grade B-cell lymphoma with concurrent MYC and BCL2 rearrangements (HGBL-DHL) is a rare, aggressive mature B-cell malignancy with a high likelihood of treatment failure following front-line immunochemotherapies. Patients with HGBL-DHL who develop a relapsed or refractory disease have little effective therapeutic strategies and show very poor clinical outcomes, thus calling for development of novel therapies for this specific patient population. In this study, we investigated the preclinical anti-lymphoma efficacies and potential mechanism of action of a novel treatment approach, combining the BCL2 inhibitor venetoclax with CS2164, a new orally active multitarget inhibitor, in HGBL-DHL models. This combination therapy exhibited a robust synergistic cytotoxicity against HGBL-DHL cells, evidenced by cooperatively inducing loss of cell viability and promoting cell apoptosis. Moreover, coadministration of CS2164 and venetoclax resulted in significant superior suppression of HGBL-DHL cell growth and remarkably abrogated tumor burden in a HGBL-DHL-xenografted mouse model. The synergistic lethality of CS2164 and venetoclax in HGBL-DHL cells was associated with induction of DNA damage and impairment of DNA repair ability. Of importance, the combined treatment almost abolished the expression of both BCL2 and MYC, two hallmark proteins of HGBL-DHL, and substantially blunted the activity of PI3K/AKT/mTOR signaling cascade. In addition, MCL1 and BCL-XL, two well-characterized contributors for venetoclax resistance, were significantly lessened in the presence of CS2164 and venetoclax, thus leading to the accumulation of proapoptotic proteins BAX and PUMA and then initiating the intrinsic apoptosis pathway. Taken together, these findings suggest that the regimen of CS2164 and venetoclax is highly effective to eliminate HGBL-DHL cells in the preclinical setting, warranting further clinical investigations of this regimen for the treatment of unfavorable HGBL-DHL patients.
Collapse
Affiliation(s)
- Delin Yuan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Genhong Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qiulin Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Xiaomei Ma
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Lan V. Pham
- Biology, Tumor Dependency, Phamacyclics, Abbvie Company, San Francisco, CA, United States
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| |
Collapse
|
6
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. LINC00649 underexpression is an adverse prognostic marker in acute myeloid leukemia. BMC Cancer 2020; 20:841. [PMID: 32883226 PMCID: PMC7469387 DOI: 10.1186/s12885-020-07331-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNA) play a role in leukemogenesis, maintenance, development, and therapeutic resistance of AML. While few studies have focused on the prognostic significance of LINC00649 in AML, which we aim to investigate in this present study. METHODS We compared the expression level of LINC00649 between AML patients and healthy controls. The Kaplan-Meier curves of AML patients expressing high versus low level of LINC00649 was performed. The LINC00649 correlated genes/miRNAs/lncRNAs and methylation CpG sites were screened by Pearson correlation analysis with R (version 3.6.0), using TCGA-LAML database. The LINC00649 associated ceRNA network was established using lncBase 2.0 and miRWalk 2.0 online tools, combining results from correlation analysis. Finally, a prediction model was constructed using LASSO-Cox regression. RESULTS LINC00649 was underexpressed in bone marrow of AML group than that in healthy control group. The patients of LINC00649-low group have significantly inferior PFS and OS. A total of 154 mRNAs, 31 miRNAs, 28 lncRNAs and 1590 methylated CpG sites were identified to be significantly correlated with LINC00649. Furthermore, the network of ceRNA was established with 6 miRNAs and 122 mRNAs. The Lasso-Cox model fitted OS/PFS to novel prediction models, which integrated clinical factors, ELN risk stratification, mRNA/miRNA expression and methylation profiles. The analysis of time-dependent ROC for our model showed a superior AUC (AUC = 0.916 at 1 year, AUC = 0.916 at 3 years, and AUC = 0.891 at 5 years). CONCLUSIONS Low expression of LINC00649 is a potential unfavorable prognostic marker for AML patients, which requires the further validation. The analysis by LASSO-COX regression identified a novel comprehensive model with a superior diagnostic utility, which integrated clinical and genetic variables.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
7
|
Maoz A, Ciccone MA, Matsuzaki S, Coleman RL, Matsuo K. Emerging serine-threonine kinase inhibitors for treating ovarian cancer. Expert Opin Emerg Drugs 2020; 24:239-253. [PMID: 31755325 DOI: 10.1080/14728214.2019.1696773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Ovarian cancer is the leading cause of gynecologic cancer death, owing to high rates of incurable, recurrent disease after initial treatment. Serine threonine kinases (STKs) have been proposed as potential therapeutic targets in ovarian cancer because of their role in the initiation and progression of cancers. Experience in non-ovarian cancers suggests that STK inhibitors are active against tumors with specific molecular alterations.Areas covered: This review discusses STK inhibitors in active development in phase II/III clinical trials for ovarian cancer. PubMed and ClinicalTrials.gov were systematically searched to identify STK inhibitor trials for ovarian cancer; active development was confirmed via Pharmaprojects. Available data regarding the efficacy and safety of these compounds are explored.Expert opinion: STK inhibitors currently in development have modest activity as single agents and are unlikely to achieve approval as monotherapy for unselected ovarian cancer patients. Combination trials of STK inhibitors with chemotherapy and/or targeted therapies have suggested an acceptable efficacy/toxicity ratio for certain combinations but confirmatory studies are needed. Carefully designed trials, especially those including somatic molecular analysis, may help identify the subsets of patients most likely to benefit from these therapeutic strategies and determine the role of STK inhibitors in the evolving landscape of precision oncology.
Collapse
Affiliation(s)
- Asaf Maoz
- Department of Internal Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Marcia A Ciccone
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shinya Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Robert L Coleman
- Department of Gynecologic Oncology, University of Texas, MD-Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Deng M, Zha J, Zhao H, Jia X, Shi Y, Li Z, Fu G, Yu L, Fang Z, Xu B. Apatinib exhibits cytotoxicity toward leukemia cells by targeting VEGFR2-mediated prosurvival signaling and angiogenesis. Exp Cell Res 2020; 390:111934. [PMID: 32126236 DOI: 10.1016/j.yexcr.2020.111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vascular permeability contributes to disease progression and drug resistance in hematological malignancies, including AML. Thus, targeting angiogenic signaling is a promising treatment strategy, especially for relapsed and resistant AML. The aim of this study was to evaluate the efficacy of apatinib, a novel receptor tyrosine kinase inhibitor that selectively targets VEGFR2. METHODS Several AML cell lines were exposed to various concentrations of apatinib, and then CCK8 and Annexin V/PI assays were performed to determine IC50 values and apoptosis, respectively. The effect of apatinib against primary AML cells from 57 adult patients and 11 normal controls was also analyzed utilizing an apoptosis assay. Next, we tested the underlying mechanism of apatinib in AML using western blotting and mass cytometry (CyTOF). Finally, the activity of apatinib against tumor growth and angiogenesis was further evaluated in vivo in xenograft models. RESULTS We found apatinib significantly inhibited growth and promoted apoptosis in AML cell lines in vitro. Similarly, apatinib showed cytotoxicity against primary AML cells but didn't affect normal BMMCs. Its effect was highly correlated with several clinical features, such as NPM1 mutation, extramedullary infiltration, relapsed/refractory disease, and M2 and M5 FAB subtypes. In addition, apatinib suppressed AML growth and attenuated angiogenesis in xenograft models. Mechanistically, apatinib-induced cytotoxicity was closely associated with inhibition of the VEGFR2-mediated Src/STAT3 and AKT/mTOR pathways and induction of mitochondria-mediated apoptosis. CONCLUSION Apatinib exerts antileukemia effects by targeting VEGFR2-induced prosurvival signaling and angiogenesis, thus providing a rationale for the application of apatinib in AML.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, PR China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, PR China.
| |
Collapse
|