1
|
Zhu L, Zhang M, Leng J, Zhao B, Ning M, Zhang C, Kong L, Yin Y. Discovery of novel quinazoline derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potential anti-colon cancer effects. Eur J Med Chem 2024; 280:117000. [PMID: 39489984 DOI: 10.1016/j.ejmech.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Tubulin is a critical target for cancer therapy, with colchicine binding site inhibitors (CBSIs) being the most extensively researched. A series of quinazoline derivatives designed to target the colchicine binding site of tubulin were synthesized and evaluated for their biological activities. The antiproliferative effects of these compounds were tested against six human cancer cell lines, and compound Q19 demonstrated potent antiproliferative activity against the HT-29 cell line, with an IC50 value of 51 nM. Additionally, further investigation revealed that Q19 effectively inhibited microtubule polymerization by binding to the colchicine binding site on tubulin. Furthermore, compound Q19 arrested the HT-29 cell cycle at the G2/M phase, induced apoptosis in these cells, and disrupted angiogenesis. Finally, compound Q19 exhibited potent inhibitory effects on tumor growth in HT-29 xenografted mice while demonstrating minimal toxic side effects and acceptable pharmacokinetic properties. These findings suggested that Q19 hold promise as a potential candidate for colon cancer therapy targeting tubulin.
Collapse
Affiliation(s)
- Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Al-Warhi T, Abualnaja M, Abu Ali OA, Althobaiti F, Alharthi F, Elsaid FG, Shati AA, Fayad E, Elghareeb D, Abu Almaaty AH, Zaki I. Synthesis and Biological Activity Screening of Newly Synthesized Trimethoxyphenyl-Based Analogues as Potential Anticancer Agents. Molecules 2022; 27:molecules27144621. [PMID: 35889493 PMCID: PMC9322052 DOI: 10.3390/molecules27144621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 μM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of β-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Matokah Abualnaja
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Al Mukarrama 24381, Saudi Arabia;
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Doaa Elghareeb
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Cairo 12619, Egypt
| | - Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence:
| |
Collapse
|
3
|
Wu CJ, Wu JQ, Hu Y, Pu S, Lin Y, Zeng Z, Hu J, Chen WH. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors. Eur J Med Chem 2021; 223:113629. [PMID: 34175541 DOI: 10.1016/j.ejmech.2021.113629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
A series of indole-based [1,2,4]triazolo [4,3-a]pyridine derivatives was designed and synthesized as novel microtubulin polymerization inhibitors by using a conformational restriction strategy. These compounds exhibited moderate to potent anti-proliferative activities against a panel of cancer cell lines (HeLa, A549, MCF-7 and HCT116). Among them, compound 12d featuring a N-methyl-5-indolyl substituent at the C-6 position of the [1,2,4]triazolo [4,3-a]pyridine core exhibited the highest antiproliferative activity with the IC50 values ranging from 15 to 69 nM, and remarkable inhibitory effect on tubulin polymerization with an IC50 value of 1.64 μM. Mechanistic studies revealed that compound 12d induced cellular apoptosis and cell cycle arrest at the G2/M phase in a dose-dependent fashion. Moreover, compound 12d significantly suppressed wound closure and disturbed microtubule networks.
Collapse
Affiliation(s)
- Cheng-Jun Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yuying Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Zimai Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|