1
|
Gladen-Kolarsky N, Neff CJ, Hack W, Brandes MS, Wiedrick J, Meza-Romero R, Lockwood DR, Quinn JF, Offner H, Vandenbark AA, Gray NE. The CD74 inhibitor DRhQ improves short-term memory and mitochondrial function in 5xFAD mouse model of Aβ accumulation. Metab Brain Dis 2025; 40:95. [PMID: 39808341 DOI: 10.1007/s11011-024-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression. Here, we evaluate its effects in amyloid-β (Aβ) overexpressing mice. 5xFAD mice and their wild type littermates were treated with DRhQ (100 µg) or vehicle for 4 weeks. DRhQ improved cognition and cortical mitochondrial function in both male and female 5xFAD mice. Aβ plaque burden in 5xFAD animals was not robustly impacted by DRhQ treatment in either the hippocampus or the cortex. Cortical microglial activation was similarly not apparently affected by DRhQ treatment, although in the hippocampus there was evidence of a reduction in activated microglia for female 5xFAD mice. Future studies are needed to confirm this possible sex-dependent response on microglial activation, as well as to optimize the dose and timing of DRhQ treatment and gain a better understanding of its mechanism of action in AD.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cody J Neff
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mikah S Brandes
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, OHSU-PSU School of Public Health, Portland, OR, 97201, USA
| | - Roberto Meza-Romero
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Denesa R Lockwood
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Halina Offner
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Loftis JM, Ramani S, Firsick EJ, Hudson R, Le-Cook A, Murnane KS, Vandenbark A, Shirley RL. Immunotherapeutic treatment of inflammation in mice exposed to methamphetamine. Front Psychiatry 2023; 14:1259041. [PMID: 38025429 PMCID: PMC10666795 DOI: 10.3389/fpsyt.2023.1259041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Currently, there are no FDA-approved medications to treat methamphetamine addiction, including the inflammatory, neurotoxic, and adverse neuropsychiatric effects. We have shown that partial (p)MHC class II constructs (i.e., Recombinant T-cell receptor Ligand - RTL1000), comprised of the extracellular α1 and β1 domains of MHC class II molecules linked covalently to myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide, can address the neuroimmune effects of methamphetamine addiction through its ability to bind to and down-regulate CD74 expression, block macrophage migration inhibitory factor (MIF) signaling, and reduce levels of pro-inflammatory chemokine ligand 2 (CCL2). The present study evaluated the effects of our third-generation pMHC II construct, DRmQ, on cognitive function and concentration of inflammatory cytokines in the frontal cortex, a region critical for cognitive functions such as memory, impulse control, and problem solving. Methods Female and male C57BL/6J mice were exposed to methamphetamine (or saline) via subcutaneous (s.c.) injections administered four times per day every other day for 14 days. Following methamphetamine exposure, mice received immunotherapy (DRmQ or ibudilast) or vehicle s.c. injections daily for five days. Cognitive function was assessed using the novel object recognition test (NORT). To evaluate the effects of immunotherapy on inflammation in the frontal cortex, multiplex immunoassays were conducted. ANOVA was used to compare exploration times on the NORT and immune factor concentrations. Results Post hoc analysis revealed increased novel object exploration time in MA-DRmQ treated mice, as compared to MA-VEH treated mice (non-significant trend). One-way ANOVA detected a significant difference across the groups in the concentration of macrophage inflammatory protein-2 (MIP-2) (p = 0.03). Post hoc tests indicated that mice treated with methamphetamine and DRmQ or ibudilast had significantly lower levels of MIP-2 in frontal cortex, as compared to mice treated with methamphetamine and vehicle (p > 0.05). Discussion By specifically targeting CD74, our DRQ constructs can block the signaling of MIF, inhibiting the downstream signaling and pro-inflammatory effects that contribute to and perpetuate methamphetamine addiction.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Methamphetamine Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Sankrith Ramani
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Evan J. Firsick
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Rebekah Hudson
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Anh Le-Cook
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Arthur Vandenbark
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
3
|
Marusich JA, Gay EA, Stewart DA, Blough BE. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology 2022; 88:65-78. [PMID: 34742947 PMCID: PMC8748414 DOI: 10.1016/j.neuro.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Synthetic cathinones are used as stimulants of abuse. Many abused drugs, including stimulants, activate nuclear factor-κB (NF-κB) transcription leading to increases in NF-κB-regulated pro-inflammatory cytokines, and the level of inflammation appears to correlate with length of abuse. The purpose of this study was to measure the profile of IL-1α, IL-1β, IL-6, CCL2 and TNF-α in brain and plasma to examine if drug exposure alters inflammatory markers. Male and female Sprague-Dawley rats were trained to self-administer α-pyrrolidinopentiophenone (α-PVP) (0.1 mg/kg/infusion), 4-methylmethcathinone (4MMC) (0.5 mg/kg/infusion), or saline through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Cytokine levels were examined in amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, thalamus, and plasma. Rats acquired synthetic cathinone self-administration, and there were no sex differences in drug intake. Synthetic cathinone self-administration produced sex differences in IL-1α, IL-1β, IL-6, CCL2 and TNF-α levels. There were widespread increases in inflammatory cytokines in the brains of male rats compared to females, particularly for 4MMC, whereas females were more likely to show increased inflammatory cytokines in plasma compared to saline groups than males. Furthermore, these sex differences in cytokine levels were more common after LgA access to synthetic cathinones than ShA. These results suggest that synthetic cathinone use likely produces sex-selective patterns of neuroinflammation during the transition from use to abuse. Consequently, treatment need may differ depending on the progression of synthetic cathinone abuse and based on sex.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Elaine A. Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|