1
|
Kao SY, Tsao CM, Ke HY, Chou MF, Wu CC, Shih CC. Loss of plasma fibrinogen contributes to platelet hyporeactivity in rats with septic shock. Thromb Res 2024; 241:109072. [PMID: 38945093 DOI: 10.1016/j.thromres.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Dysregulated host response to infection causes life-threatening organ dysfunction. Excessive inflammation and abnormal blood coagulation can lead to disseminated intravascular coagulation (DIC) and multiple-organ failure in the late sepsis stages. Platelet function impairment in sepsis contributes to bleeding, secondary infection, and tissue injury. Platelet transfusion is considered in patients with sepsis with DIC and bleeding; however, its benefits are limited and of low quality. Fibrinogen plays a crucial role in platelet function, and establishing a fibrin network binds to activated integrin αIIbβ3 and promotes outside-in signaling that amplifies platelet functions. However, the role of fibrinogen in sepsis-induced platelet dysfunction remains unclear. MATERIALS AND METHODS We evaluated the effects of fibrinogen on platelet hyporeactivity during septic shock in adult male Wistar rats using lipopolysaccharide (LPS) injection and cecal ligation and puncture (CLP) surgery. Changes in the hemodynamic, biochemical, and coagulation parameters were examined. Platelet activation and aggregation were measured using whole-blood assay, 96-well plate-based aggregometry, and light-transmission aggregometry. Additionally, platelet adhesion, spreading, and fibrin clot retraction were evaluated. RESULTS Rats with LPS- and CLP-induced sepsis displayed considerable decreases in plasma fibrinogen levels and platelet aggregation, adhesion, spreading, and clot retraction. The aggregation of platelets obtained from rats with sepsis was markedly augmented by fibrinogen supplementation. Additionally, fibrinogen administration improved platelet adhesion, spreading, and clot retraction in rats with sepsis. CONCLUSIONS Fibrinogen supplementation could serve as a potential therapeutic intervention for alleviating platelet hyporeactivity in patients with sepsis and bleeding.
Collapse
Affiliation(s)
- Shih-Yao Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University, Taipei, Taiwan, ROC
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Mei-Fang Chou
- Department of Pharmacy, Tri-Service General Hospital Penghu Branch, Penghu, Taiwan, ROC
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Chin Shih
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Li C, Hou D, Huang Y, Liu Y, Li Y, Wang C. Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p. Toxicol Res (Camb) 2024; 13:tfae081. [PMID: 38855635 PMCID: PMC11161260 DOI: 10.1093/toxres/tfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Background Corylin, a natural flavonoid, is isolated from the fruit of Psoralea corylifolia L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction. Methods Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS. Results Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS. Conclusion These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Noninvasive Electrocardiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo 315000, China
| | - Daorong Hou
- Key Laboratory of Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Yanhong Huang
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yifan Liu
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| | - Cheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| |
Collapse
|
3
|
Liu A, Zhang Y, Xun S, Zhou G, Hu J, Liu Y. Targeting of cold-inducible RNA-binding protein alleviates sepsis via alleviating inflammation, apoptosis and oxidative stress in heart. Int Immunopharmacol 2023; 122:110499. [PMID: 37392569 DOI: 10.1016/j.intimp.2023.110499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
A systemic inflammatory response is observed in patients undergoing shock and sepsis. This study aimed to explore the effects of cold-inducible RNA-binding protein (CIRP) on sepsis-associated cardiac dysfunction and the underlying mechanism. In vivo and in vitro lipopolysaccharide (LPS)-induced sepsis models were established in mice and neonatal rat cardiomyocytes (NRCMs), respectively. CRIP expressions were increased in the mouse heart and NRCMs treated with LPS. CIRP knockdown alleviated LPS-induced decreases of left ventricular ejection fraction and fractional shortening. CIRP downregulation attenuated the increases of inflammatory factors in the LPS-induced septic mouse heart, and NRCMs. The enhanced oxidative stress in the LPS-induced septic mouse heart and NRCMs was suppressed after CIRP knockdown. By contrast, CIRP overexpression yielded the opposite results. Our current study indicates that the knockdown of CIRP protects against sepsis-induced cardiac dysfunction through alleviating inflammation, apoptosis and oxidative stress of cardiomyocytes.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China.
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Yang L, Yan L, Tan W, Zhou X, Yang G, Yu J, Lu Z, Liu Y, Zou L, Li W, Yu L. Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β. Front Pharmacol 2023; 14:1181319. [PMID: 37456759 PMCID: PMC10338930 DOI: 10.3389/fphar.2023.1181319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3β (GSK-3β) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3β indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3β expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3β mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3β in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3β inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3β, both in vitro and in vivo.
Collapse
Affiliation(s)
- Liling Yang
- Department of Pharmacy, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weifu Tan
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guangli Yang
- Department of Central Laboratory, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyi Zou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Li
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu A, Xun S, Zhou G, Zhang Y, Lin L. Honokiol alleviates sepsis-associated cardiac dysfunction via attenuating inflammation, apoptosis and oxidative stress. J Pharm Pharmacol 2023; 75:397-406. [PMID: 36718013 DOI: 10.1093/jpp/rgac102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Honokiol, a natural active compound extracted from Chinese herbal medicine, can ameliorate acute lung and kidney injury of sepsis. This study was to explore the effects of honokiol on sepsis-associated cardiac dysfunction and the underlying mechanism. METHODS Septic mice were induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS), and septic HL-1 or AC16 cells were induced by LPS. RESULTS Honokiol improved the survival and alleviated cardiac dysfunction in mice with CLP-induced sepsis. Honokiol inhibited the increased interleukin (IL) 1-β, IL-6 and tumour necrosis factor (TNF)-α in the serum and heart of CLP- and LSP-induced septic mice. Honokiol treatment reversed the increased levels of IL1-β, IL-6 and TNF-α in LPS-induced HL-1 cells. Honokiol treatment also decreased the elevated levels of IL1-β, IL-6 and TNF-α in LPS-induced AC16 cells. The increased cardiac apoptosis in CLP- and LPS-induced septic mice was alleviated by honokiol. The enhancement of oxidative stress in the heart of CLP- and LPS-induced septic mice was suppressed after honokiol administration. CONCLUSION These results showed that honokiol could ameliorate sepsis-associated cardiac dysfunction via attenuating inflammation, apoptosis, and oxidative stress. Honokiol is a prospective drug for sepsis-associated heart damage in the future.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhu C, Zuo Z, Xu C, Ji M, He J, Li J. Tumstatin (69-88) alleviates heart failure via attenuating oxidative stress in rats with myocardial infarction. Heliyon 2022; 8:e10582. [PMID: 36158078 PMCID: PMC9489976 DOI: 10.1016/j.heliyon.2022.e10582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to elucidate the effects of tumstatin (69–88) on heart failure and the underlying mechanism. Materials and methods Myocardial infarction (MI) was induced by ligating the left coronary artery in rats to trigger heart failure. Results Tumstatin (69–88) can reduce cardiac insufficiency in rats with heart failure. The increased cardiac fibrosis in MI rat was attenuated by tumstatin (69–88). Increase of cardiac atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in rats with myocardial infarction, and Ang II-treated NRCMs or H9C2 cells was inhibited by tumstatin (69–88). In the heart of MI rats, and Ang II-treated NRCMs or H9C2 cells, the superoxide anions and NADPH oxidase (Nox) activity rose and the superoxide dismutase (SOD) activity was reduced, which was inhibited by tumstatin (69–88). Diethyldithiocarbamate, an SOD inhibitor, increased the ANP and BNP in NRCMs or H9C2 cells. Tumstatin (69–88) inhibited the Ang II-induced raises of ANP and BNP in NRCMs or H9C2 cells, which was reversed by DETC. Conclusions These results indicate that tumstatin (69–88) alleviates cardiac dysfunction of heart failure. Tumstatin (69–88) improves the hypertrophy of cardiomyocytes via attenuation of oxidative stress. Tumstatin (69–88) may be a potential drug for heart failure in the future.
Collapse
Affiliation(s)
- Congfei Zhu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Junjie He
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Suqian, China
| |
Collapse
|
7
|
Liu A, Zhang Y, Xun S, Zhou G, Lin L, Mei Y. Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress. Peptides 2022; 153:170786. [PMID: 35304156 DOI: 10.1016/j.peptides.2022.170786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) mediate key cardiac functions from development to homeostasis and disease. The current research was to explore the effects of FGF12 in the fibrosis of cardiac function and heart failure, and whether FGF12 alleviated cardiac fibrosis via inhibition of oxidative stress. Ligation of left coronary artery in mice induced heart failure and myocardial infarction (MI). Angiotensin II (Ang II) was administered to cardiac fibroblasts (CFs). FGF12 upregulation or FGF12 transgenic (Tg) mice could improve cardiac dysfunction of MI mice, and attenuated cardiac fibrosis of heart failure induced by MI in mice. FGF12 overexpression suppressed the increases of collagen I, collagen III and fibronectin which was induced by Ang II in CFs. The oxidative stress was enhanced in the heart of MI mice and CFs treated with Ang II, and these enhances were attenuated via FGF12 overexpression. Superoxide dismutase (SOD) overexpression inhibited the enhancements of collagen I, collagen III and fibronectin in the heart of MI mice, and in the CFs treated with Ang II. Overexpression of nicotinamide adenine dinucleotide phosphate oxidases (Nox1) reversed the attenuating influences of FGF12 on the enhancements of collagen I, collagen III and fibronectin in the CFs induced by Ang II. These outcomes showed that FGF12 upregulation can improve cardiac dysfunction and heart fibrosis of heart failure. FGF12 attenuates oxidative stress to suppress the cardiac fibrosis.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|