1
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
2
|
Belete TM. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann Neurosci 2023; 30:262-276. [PMID: 38020406 PMCID: PMC10662271 DOI: 10.1177/09727531231185991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, Africa
| |
Collapse
|
3
|
Ying Y, Gong L, Tao X, Ding J, Chen N, Yao Y, Liu J, Chen C, Zhu T, Jiang P. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 2022; 59:6918-6933. [PMID: 36053438 DOI: 10.1007/s12035-022-02993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a chronic brain disease that makes serious cognitive and motor retardation. Ion channels affect the occurrence of epilepsy in various ways, but the mechanisms have not yet been fully elucidated. Transient receptor potential melastain2 (TRPM2) ion channel is a non-selective cationic channel that can permeate Ca2+ and critical for epilepsy. Here, TRPM2 gene knockout mice were used to generate a chronic kindling epilepsy model by PTZ administration in mice. We found that TRPM2 knockout mice were more susceptible to epilepsy than WT mice. Furthermore, the neuronal excitability in the hippocampal CA1 region of TRPM2 knockout mice was significantly increased. Compared with WT group, there were no significant differences in the input resistance and after hyperpolarization of CA1 neurons in TRPM2 knockout mice. Firing adaptation rate of hippocampal CA1 pyramidal neurons of TRPM2 knockout mice was lower than that of WT mice. We also found that activation of Kv7 channel by retigabine reduced the firing frequency of action potential in the hippocampal pyramidal neurons of TRPM2 knockout mice. However, inhibiting Kv7 channel increased the firing frequency of action potential in hippocampal pyramidal neurons of WT mice. The data suggest that activation of Kv7 channel can effectively reduce epileptic seizures in TRPM2 knockout mice. We conclude that genetic knockout of TRPM2 in hippocampal CA1 pyramidal neurons may increase neuronal excitability by inhibiting Kv7 channel, affecting the susceptibility to epilepsy. These findings may provide a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Yingchao Ying
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lifen Gong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junchao Ding
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Yiwu Maternal and Child Health Care Hospital, Yiwu, China
| | - Nannan Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yinping Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, China
| | - Jiajing Liu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chen Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Peifang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Hernandez CC, Tarfa RA, Miguel I Limcaoco J, Liu R, Mondal P, Hill C, Keith Duncan R, Tzounopoulos T, Stephenson CRJ, O'Meara MJ, Wipf P. Development of an automated screen for Kv7.2 potassium channels and discovery of a new agonist chemotype. Bioorg Med Chem Lett 2022; 71:128841. [PMID: 35671848 PMCID: PMC9469649 DOI: 10.1016/j.bmcl.2022.128841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes. Positive controls were retigabine, flupirtine, and RL-81; i.e. Kv7.2 channel activators that significantly shift voltage-dependent activation to more negative potentials (ΔV50) at 5 µM. We identified 6 new compounds that exhibited differential enhancing activity between WT and W236L mutant channels. Whole cell patch-clamp electrophysiology studies were conducted to identify Kv7.2. Kv7.2/3, Kv7.4, and Kv7.5 selectivity. Our results validate the SyncroPatch platform and establish new structure activity relationships (SAR). Specifically, in addition to selective Kv7.2, Kv7.2/3, Kv7.4. and Kv7.5 agonists, we identified a novel chemotype, ZK-21, a 4-aminotetrahydroquinoline that is distinct from any of the previously described Kv7 channel modifiers. Using flexible receptor docking, ZK-21 was predicted to be stabilized by W236 and bind perpendicular to retigabine, burying the benzyl carbamate group into a tunnel reaching the core of the pore domain.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rahilla A Tarfa
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Clare Hill
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - R Keith Duncan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, United States; School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
5
|
Musella S, Carotenuto L, Iraci N, Baroli G, Ciaglia T, Nappi P, Basilicata MG, Salviati E, Barrese V, Vestuto V, Pignataro G, Pepe G, Sommella E, Di Sarno V, Manfra M, Campiglia P, Gomez-Monterrey I, Bertamino A, Taglialatela M, Ostacolo C, Miceli F. Beyond Retigabine: Design, Synthesis, and Pharmacological Characterization of a Potent and Chemically Stable Neuronal Kv7 Channel Activator with Anticonvulsant Activity. J Med Chem 2022; 65:11340-11364. [PMID: 35972998 PMCID: PMC9421656 DOI: 10.1021/acs.jmedchem.2c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Neuronal Kv7 channels represent important pharmacological
targets
for hyperexcitability disorders including epilepsy. Retigabine is
the prototype Kv7 activator clinically approved for seizure treatment;
however, severe side effects associated with long-term use have led
to its market discontinuation. Building upon the recently described
cryoEM structure of Kv7.2 complexed with retigabine and on previous
structure–activity relationship studies, a small library of
retigabine analogues has been designed, synthesized, and characterized
for their Kv7 opening ability using both fluorescence- and electrophysiology-based
assays. Among all tested compounds, 60 emerged as a potent
and photochemically stable neuronal Kv7 channel activator. Compared
to retigabine, compound 60 displayed a higher brain/plasma
distribution ratio, a longer elimination half-life, and more potent
and effective anticonvulsant effects in an acute seizure model in
mice. Collectively, these data highlight compound 60 as
a promising lead compound for the development of novel Kv7 activators
for the treatment of hyperexcitability diseases.
Collapse
Affiliation(s)
- Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Piera Nappi
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | | | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Michele Manfra
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| |
Collapse
|
6
|
Wurm KW, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Carba Analogues of Flupirtine and Retigabine with Improved Oxidation Resistance and Reduced Risk of Quinoid Metabolite Formation. ChemMedChem 2022; 17:e202200262. [PMID: 35687532 PMCID: PMC9541272 DOI: 10.1002/cmdc.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Indexed: 01/10/2023]
Abstract
The KV7 potassium channel openers flupirtine and retigabine have been valuable options in the therapy of pain and epilepsy. However, as a result of adverse reactions, both drugs are currently no longer in therapeutic use. The flupirtine‐induced liver injury and the retigabine linked tissue discolouration do not appear related at first glance; nevertheless, both events can be attributed to the triaminoaryl scaffold, which is affected by oxidation leading to elusive reactive quinone diimine or azaquinone diimine metabolites. Since the mechanism of action, i. e. KV7 channel opening, seems not to be involved in toxicity, this study aimed to further develop safer replacements for flupirtine and retigabine. In a ligand‐based design strategy, replacing amino substituents of the triaminoaryl core with alkyl substituents led to carba analogues with improved oxidation resistance and negligible risk of quinoid metabolite formation. In addition to these improved safety features, some of the novel analogues exhibited significantly improved KV7.2/3 channel opening activity, indicated by an up to 13‐fold increase in potency and an efficacy of up to 176 % compared to flupirtine, thus being attractive candidates for further development.
Collapse
Affiliation(s)
- Konrad W Wurm
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Frieda-Marie Bartz
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Lukas Schulig
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Anja Bodtke
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Patrick J Bednarski
- University of Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Andreas Link
- University of Greifswald, Institute of Pharmacy, F.-L.-Jahn-Str. 17, 17487, Greifswald, GERMANY
| |
Collapse
|
7
|
Wurm K, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS OMEGA 2022; 7:7989-8012. [PMID: 35284765 PMCID: PMC8908504 DOI: 10.1021/acsomega.1c07103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 05/09/2023]
Abstract
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
Collapse
|
8
|
Costi S, Han MH, Murrough JW. The Potential of KCNQ Potassium Channel Openers as Novel Antidepressants. CNS Drugs 2022; 36:207-216. [PMID: 35258812 DOI: 10.1007/s40263-021-00885-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide and less than one-third of patients with MDD achieve stable remission of symptoms, despite currently available treatments. Although MDD represents a serious health problem, a complete understanding of the neurobiological mechanisms underlying this condition continues to be elusive. Accumulating evidence from preclinical and animal studies provides support for the antidepressant potential of modulators of KCNQ voltage-gated potassium (K+) channels. KCNQ K+ channels, through regulation of neuronal excitability and activity, contribute to neurophysiological mechanisms underlying stress resilience, and represent potential targets of drug discovery for depression. The present article focuses on the pharmacology and efficacy of KCNQ2/3 K+ channel openers as novel therapeutic agents for depressive disorders from initial studies conducted on animal models showing depressive-like behaviors to recent work in humans that examines the potential for KCNQ2/3 channel modulators as novel antidepressants. Data from preclinical work suggest that KCNQ-type K+ channels are an active mediator of stress resilience and KCNQ2/3 K+ channel openers show antidepressant efficacy. Similarly, evidence from clinical trials conducted in patients with MDD using the KCNQ2/3 channel opener ezogabine (retigabine) showed significant improvements in depressive symptoms and anhedonia. Overall, KCNQ channel openers appear a promising target for the development of novel therapeutics for the treatment of psychiatric disorders and specifically for MDD.
Collapse
Affiliation(s)
- Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Center for Affective Neuroscience, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - James W Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Bloms-Funke P, Bankstahl M, Bankstahl J, Kneip C, Schröder W, Löscher W. The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology 2022; 203:108884. [PMID: 34785163 DOI: 10.1016/j.neuropharm.2021.108884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy, one of the most common and most disabling neurological disorders, is characterized by spontaneous recurrent seizures, often associated with structural brain alterations and cognitive and psychiatric comorbidities. In about 30% of patients, the seizures are resistant to current treatments; so more effective treatments are urgently needed. Among the ∼30 clinically approved antiseizure drugs, retigabine (ezogabine) is the only drug that acts as a positive allosteric modulator (or opener) of voltage-gated Kv7 potassium channels, which is particularly interesting for some genetic forms of epilepsy. Here we describe a novel dual-mode-of-action compound, GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-carboxylic acid amide) that activates both Kv7 potassium channels and the mitochondrial translocator protein 18 kDa (TSPO), leading to increased synthesis of brain neurosteroids. TSPO activators are known to exert anti-inflammatory, neuroprotective, anxiolytic, and antidepressive effects, which, together with an antiseizure effect (mediated by Kv7 channels), would be highly relevant for the treatment of epilepsy. This prompted us to compare the antiseizure efficacy of retigabine and GRT-X in six mouse and rat models of epileptic seizures, including the 6-Hz model of difficult-to-treat focal seizures. Furthermore, the tolerability of the two compounds was compared in mice and rats. Potency comparisons were based on both doses and peak plasma concentrations. Overall, GRT-X was more effective than retigabine in three of the six seizure models used here, the most important difference being the high efficacy in the 6-Hz (32 mA) seizure model in mice. Based on drug plasma levels, GRT-X was at least 30 times more potent than retigabine in the latter model. These data indicate that GRT-X is a highly interesting novel anti-seizure drug with a unique (first-in-class) dual-mode mechanism of action.
Collapse
Affiliation(s)
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Jens Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
10
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
11
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|