1
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
2
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
3
|
Nielsen VG. Novel Toxicodynamic Model of Subcutaneous Envenomation to Characterize Snake Venom Coagulopathies and Assess the Efficacy of Site-Directed Inorganic Antivenoms. Int J Mol Sci 2023; 24:13939. [PMID: 37762243 PMCID: PMC10530349 DOI: 10.3390/ijms241813939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Venomous snake bite adversely affects millions of people yearly, but few animal models allow for the determination of toxicodynamic timelines with hemotoxic venoms to characterize the onset and severity of coagulopathy or assess novel, site-directed antivenom strategies. Thus, the goals of this investigation were to create a rabbit model of subcutaneous envenomation to assess venom toxicodynamics and efficacy of ruthenium-based antivenom administration. New Zealand White rabbits were sedated with midazolam via the ear vein and had viscoelastic measurements of whole blood and/or plasmatic coagulation kinetics obtained from ear artery samples. Venoms derived from Crotalus scutulatus scutulatus, Bothrops moojeni, or Calloselasma rhodostoma were injected subcutaneously, and changes in coagulation were determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had ruthenium-based antivenoms injected five minutes after venom injection. Viscoelastic analyses demonstrated diverse toxicodynamic patterns of coagulopathy consistent with the molecular composition of the proteomes of the venoms tested. The antivenoms tested attenuated venom-mediated coagulopathy. A novel rabbit model can be used to characterize the onset and severity of envenomation by diverse proteomes and to assess site-directed antivenoms. Future investigation is planned involving other medically important venoms and antivenom development.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Mokhtari B, Hamidi M, Badalzadeh R, Mahmoodpoor A. Mitochondrial transplantation protects against sepsis-induced myocardial dysfunction by modulating mitochondrial biogenesis and fission/fusion and inflammatory response. Mol Biol Rep 2023; 50:2147-2158. [PMID: 36565415 DOI: 10.1007/s11033-022-08115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/10/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction is associated with worse clinical outcomes and high mortality, but no effective therapeutic intervention has been explored, reinforcing the urgent need to develop innovative strategies. Mitochondrial dysfunction underlies the pathogenesis of sepsis-induced myocardial dysfunction. Herein, we assessed the effect of mitochondrial transplantation on sepsis-induced myocardial dysfunction in a rat model of cecal ligation and puncture (CLP)-induced sepsis. METHODS Male Wistar rats (n = 80, 12 weeks old, 250-300 g) were divided into groups with/without CLP-induced sepsis receiving mitochondrial transplantation in single or two repetitive injections (1 h or 1 and 7 h post-CLP, respectively). Mitochondria were isolated from donor rats and injected intravenously (400 µl of mitochondrial suspension containing 7.5 × 106 mitochondria/ml of respiration buffer) in recipient groups. Twenty-four hours post-operation, LDH and cTn-I levels, mitochondrial functional endpoints, expression of mitochondrial biogenesis (SIRT-1 and PGC-1α) and fission/fusion (Drp1/Mfn1 and Mfn2) genes, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels were evaluated. Survival was tested over 72 h post-operation. RESULTS Mitotherapy significantly improved 72-hours survival (P < .05) and decreased LDH and cTn-I levels (P < .01). It also restored mitochondrial function and expression of mitochondrial biogenesis and fusion genes, and decreased the expression of mitochondrial fission gene and the levels of inflammatory cytokines (P < .05 to P < .01). Mitotherapy with repetitive injections at 1 and 7 h post-CLP provided noticeable mitoprotection in comparison with the group receiving mitotherapy at single injection. CONCLUSION Mitotherapy improved mitochondrial function, biogenesis, and dynamic associated with SIRT-1/PGC-1α network and suppressed inflammatory response in CLP-induced sepsis model, therefore, offers a promising strategy to overcome life-threatening sepsis challenge.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Hamidi
- Anesthesiology Department, Ali Nasab Hospital, Tabriz, Iran
| | - Reza Badalzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ata Mahmoodpoor
- Evidence-based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Niu Q, Liu F, Zhang J, Yang X, Wang X. Carbon monoxide-releasing molecule-2 protects intestinal mucosal barrier function by reducing epithelial tight-junction damage in rats undergoing cardiopulmonary resuscitation. JOURNAL OF INTENSIVE MEDICINE 2022; 2:118-126. [PMID: 36789186 PMCID: PMC9923997 DOI: 10.1016/j.jointm.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Background Ischemia-reperfusion injury (IRI) to the small intestine is associated with the development of systemic inflammation and multiple organ failure after cardiopulmonary resuscitation (CPR). It has been reported that exogenous carbon monoxide (CO) reduces IRI. This study aimed to assess the effects of carbon monoxide-releasing molecule-2 (CORM-2) on intestinal mucosal barrier function in rats undergoing CPR. Methods We established a rat model of asphyxiation-induced cardiac arrest (CA) and resuscitation to study intestinal IRI, and measured the serum levels of intestinal fatty acid-binding protein. Morphological changes were investigated using light and electron microscopes. The expression levels of claudin 3 (CLDN3), occludin (OCLN), zonula occludens 1 (ZO-1), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by western blotting. Results Compared with the sham-operated group, histological changes and transmission electron microscopy revealed severe intestinal mucosal injury in the CPR and inactive CORM-2 (iCORM-2) groups. In contrast, CORM-2 alleviated intestinal IRI. CORM-2, unlike iCORM-2, markedly decreased the Chiu's scores (2.38 ± 0.38 vs. 4.59 ± 0.34; P < 0.05) and serum intestinal fatty acid-binding protein level (306.10 ± 19.22 vs. 585.64 ± 119.84 pg/mL; P < 0.05) compared with the CPR group. In addition, CORM-2 upregulated the expression levels of tight junction proteins (CLDN3, OCLN, and ZO-1) (P < 0.05) and downregulated those of IL-10, TNF-α, and NF-кB p65 (P < 0.05) in the ileum tissue of rats that received CPR. Conclusions CORM-2 prevented intestinal mucosal damage as a result of IRI during CPR. The underlying protective mechanism was associated with inhibition of ischemia-reperfusion-induced changes in intestinal epithelial permeability and inflammation in intestinal tissue.
Collapse
Affiliation(s)
- Qingsheng Niu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China,Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Fang Liu
- Department of Critical Care Medicine, Heze Second People's Hospital, Heze, Shandong 274000, China
| | - Jun Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaojun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaohong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China,Corresponding author: Xiaohong Wang, Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
6
|
Hao X, Guan R, Huang H, Yang K, Wang L, Wu Y. Anti-inflammatory activity of cyanidin-3-O-glucoside and cyanidin-3-O-glucoside liposomes in THP-1 macrophages. Food Sci Nutr 2021; 9:6480-6491. [PMID: 34925779 PMCID: PMC8645709 DOI: 10.1002/fsn3.2554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a kind of water-soluble pigment widely existing in many plants. It has strong antioxidant and anti-inflammatory activities. However, C3G cannot exist stably for a long time because of the phenolic hydroxyl groups in its structure. Liposome technology could improve the stability and bioavailability of compounds. Based on our previous studies, C3G liposomes prepared by ethanol injection method have a certain stability in two weeks of storage. In this study, THP-1 macrophages treated with C3G and C3G liposomes can reduce the levels of inflammatory-related factors, such as tumor necrosis factor-a (TNF-a), interleukin (IL)-1β, IL-6, and IL-8, stimulated by lipopolysaccharide (LPS). Further studies showed that the LPS induction could increase the level of phosphorylated nuclear transcription factor NF-κB and phosphorylated IkBa, while C3G and C3G liposomes could inhibit the expression of phosphorylated proteins. Moreover, C3G and C3G liposomes could protect macrophages from apoptosis. In conclusion, C3G prepared by liposome technology exhibits anti-inflammatory activity, which provides a theoretical basis for the food industry to study functional food.
Collapse
Affiliation(s)
- Xuefang Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
| | - Kai Yang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Lina Wang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Yuanfeng Wu
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| |
Collapse
|
7
|
Modulation of Diverse Procoagulant Venom Activities by Combinations of Platinoid Compounds. Int J Mol Sci 2021; 22:ijms22094612. [PMID: 33924780 PMCID: PMC8124986 DOI: 10.3390/ijms22094612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023] Open
Abstract
Procoagulant snake venoms have been inhibited by the ruthenium containing compounds CORM-2 and RuCl3 separately, presumably by interacting with critical histidine or other sulfur-containing amino acids on key venom enzymes. However, combinations of these and other platinoid containing compounds could potentially increase, decrease or not affect the procoagulant enzyme function of venom. Thus, the purpose of this investigation was to determine if formulations of platinoid compounds could inhibit venom procoagulant activity and if the formulated compounds interacted to enhance inhibition. Using a human plasma coagulation kinetic model to assess venom activity, six diverse venoms were exposed to various combinations and concentrations of CORM-2, CORM-3, RuCl3 and carboplatin (a platinum containing compound), with changes in venom activity determined with thrombelastography. The combinations of CORM-2 or CORM-3 with RuCl3 were found to enhance inhibition significantly, but not in all venoms nor to the same extent. In sharp contrast, carboplatin-antagonized CORM-2 mediated the inhibition of venom activity. These preliminary results support the concept that platinoid compounds may inhibit venom enzymatic activity at the same or different molecular sites and may antagonize inhibition at the same or different sites. Further investigation is warranted to determine if platinoid formulations may serve as potential antivenoms.
Collapse
|