1
|
Arnsten AFT, Ishizawa Y, Xie Z. Scientific rationale for the use of α2A-adrenoceptor agonists in treating neuroinflammatory cognitive disorders. Mol Psychiatry 2023; 28:4540-4552. [PMID: 37029295 PMCID: PMC10080530 DOI: 10.1038/s41380-023-02057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Neuroinflammatory disorders preferentially impair the higher cognitive and executive functions of the prefrontal cortex (PFC). This includes such challenging disorders as delirium, perioperative neurocognitive disorder, and the sustained cognitive deficits from "long-COVID" or traumatic brain injury. There are no FDA-approved treatments for these symptoms; thus, understanding their etiology is important for generating therapeutic strategies. The current review describes the molecular rationale for why PFC circuits are especially vulnerable to inflammation, and how α2A-adrenoceptor (α2A-AR) actions throughout the nervous and immune systems can benefit the circuits in PFC needed for higher cognition. The layer III circuits in the dorsolateral PFC (dlPFC) that generate and sustain the mental representations needed for higher cognition have unusual neurotransmission and neuromodulation. They are wholly dependent on NMDAR neurotransmission, with little AMPAR contribution, and thus are especially vulnerable to kynurenic acid inflammatory signaling which blocks NMDAR. Layer III dlPFC spines also have unusual neuromodulation, with cAMP magnification of calcium signaling in spines, which opens nearby potassium channels to rapidly weaken connectivity and reduce neuronal firing. This process must be tightly regulated, e.g. by mGluR3 or α2A-AR on spines, to prevent loss of firing. However, the production of GCPII inflammatory signaling reduces mGluR3 actions and markedly diminishes dlPFC network firing. Both basic and clinical studies show that α2A-AR agonists such as guanfacine can restore dlPFC network firing and cognitive function, through direct actions in the dlPFC, but also by reducing the activity of stress-related circuits, e.g. in the locus coeruleus and amygdala, and by having anti-inflammatory actions in the immune system. This information is particularly timely, as guanfacine is currently the focus of large clinical trials for the treatment of delirium, and in open label studies for the treatment of cognitive deficits from long-COVID.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department Neuroscience, Yale University School of Medicine, New Haven, CT, 056510, USA.
| | - Yumiko Ishizawa
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhongcong Xie
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
2
|
Zhang Q, Huang Y, Gong C, Tang Y, Xiong J, Wang D, Liu X. Dexmedetomidine attenuates inflammation and organ injury partially by upregulating Nur77 in sepsis. Immun Inflamm Dis 2023; 11:e883. [PMID: 37382273 PMCID: PMC10283499 DOI: 10.1002/iid3.883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of dexmedetomidine (Dex) on inflammation and organ injury in sepsis, as well as the potential relationship between Dex and nuclear receptor 77 (Nur77). METHODS We investigated the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells and organ injury in the cecal ligation and puncture (CLP) mouse model. Additionally, we examined the relationship between dexmedetomidine and Nur77. The expression levels of Nur77 in RAW264.7 cells were analyzed under various types of stimulation using quantitative reverse transcription polymerase chain reaction and western blot analysis. Inflammatory cytokine levels in the cells were evaluated using enzyme-linked immunoassay. Organ injuries were assessed by examining tissue histology and pathology of the lung, liver, and kidney. RESULTS Dexmedetomidine increased the expression of Nur77 and IL-10, and downregulated inflammatory cytokines (IL-1β and TNF-α) in LPS-treated RAW264.7 cells. The effect of dexmedetomidine on inhibiting inflammation in LPS-treated RAW264.7 cells was promoted by overexpressing Nur77, while it was reversed by downregulating Nur77. Additionally, dexmedetomidine promoted the expression of Nur77 in the lung and CLP-induced pathological changes in the lung, liver, and kidney. Activation of Nur77 with the agonist Cytosporone B (CsnB) significantly suppressed the production of IL-1β and TNF-α in LPS-treated RAW264.7 cells. In contrast, knockdown of Nur77 augmented IL-1β and TNF-α production in LPS-treated RAW264.7 cells. CONCLUSION Dexmedetomidine can attenuate inflammation and organ injury, at least partially, via upregulating Nur77 in sepsis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Care MedicineGuizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Yun Huang
- Department of NephrologyFirst People's HospitalGuiyangGuizhouPeople's Republic of China
| | - Chenchen Gong
- Department of Thoracic and Cardiovascular SurgeryThe Children's Hospital of Zhejiang University School of MedicineZhejiangPeople's Republic of China
| | - Yan Tang
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Jie Xiong
- Department of HematologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Difen Wang
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Xu Liu
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| |
Collapse
|
3
|
Fesharaki Zadeh A, Arnsten AFT, Wang M. Scientific Rationale for the Treatment of Cognitive Deficits from Long COVID. Neurol Int 2023; 15:725-742. [PMID: 37368329 PMCID: PMC10303664 DOI: 10.3390/neurolint15020045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Sustained cognitive deficits are a common and debilitating feature of "long COVID", but currently there are no FDA-approved treatments. The cognitive functions of the dorsolateral prefrontal cortex (dlPFC) are the most consistently afflicted by long COVID, including deficits in working memory, motivation, and executive functioning. COVID-19 infection greatly increases kynurenic acid (KYNA) and glutamate carboxypeptidase II (GCPII) in brain, both of which can be particularly deleterious to PFC function. KYNA blocks both NMDA and nicotinic-alpha-7 receptors, the two receptors required for dlPFC neurotransmission, and GCPII reduces mGluR3 regulation of cAMP-calcium-potassium channel signaling, which weakens dlPFC network connectivity and reduces dlPFC neuronal firing. Two agents approved for other indications may be helpful in restoring dlPFC physiology: the antioxidant N-acetyl cysteine inhibits the production of KYNA, and the α2A-adrenoceptor agonist guanfacine regulates cAMP-calcium-potassium channel signaling in dlPFC and is also anti-inflammatory. Thus, these agents may be helpful in treating the cognitive symptoms of long COVID.
Collapse
Affiliation(s)
- Arman Fesharaki Zadeh
- Departments of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Departments of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amy F. T. Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Min Wang
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| |
Collapse
|
4
|
Wang F, Liu J, An Q, Wang Y, Yang Y, Huo T, Yang S, Ju R, Quan Q. Aloe Extracts Inhibit Skin Inflammatory Responses by Regulating NF-κB, ERK, and JNK Signaling Pathways in an LPS-Induced RAW264.7 Macrophages Model. Clin Cosmet Investig Dermatol 2023; 16:267-278. [PMID: 36742263 PMCID: PMC9891070 DOI: 10.2147/ccid.s391741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Introduction Inflammation generally refers to the body's defensive response to stimuli, and skin inflammation is still one of the major problems that affect human physical and mental health. While current pharmacological treatments are reported to have cytotoxicity and various side effects, herbal medicines with few side effects and low cytotoxicity are considered as alternative therapeutic approaches. Methods In order to investigate anti-inflammatory effects and mechanisms of ALOE, the potential cytotoxicity of A. vera extracts (ALOE) was determined in vitro at first. The production of the pro-inflammatory proteins (ie, IL-6, TNF-α) in lipopolysaccharides (LPS) and ultraviolet A (UVA)-stimulated HaCaT and RAW264.7 cells were then treated with ALOE to test its inhibitory effects using enzyme-linked immunosorbent assay (ELISA). To further explore the anti-inflammatory mechanisms of ALOE, quantitative Polymerase Chain Reaction (qPCR) was used to analyze the mRNA expression of inflammatory genes iNOS, COX-2 and NO production. For NF-κB and MAPK signaling pathways analysis, Western blotting and nuclear fluorescence staining were used to evaluate the expression of key factors. Results ALOE did not exhibit obvious cytotoxicity (0-3 mg/mL) in vitro. ALOE was able to inhibit the expression of pro-inflammatory cytokines IL-6, TNF-α and functioned more prominently in LPS-induced model. ALOE could also suppress the mRNA expression of LPS-induced iNOS and COX-2 and further down-regulate NO level. Furthermore, ALOE reduced the protein expression of P65 in NF-κB signaling pathway and suppressed LPS-induced activation of ERK and JNK, instead of p38 MAPK pathway. Conclusion Taken together, these results demonstrated that ALOE is a potential treatment in suppressing LPS-stimulated inflammation reactions targeting NF-κB, JNK and ERK signaling pathways. The anti-inflammatory effects of ALOE indicated that it has the potential to become an effective cosmetic ingredient.
Collapse
Affiliation(s)
- Fei Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Jitao Liu
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Quan An
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| | - Yiming Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Yang Yang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Tong Huo
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Simin Yang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Ruijun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Qianghua Quan
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Yamazaki S, Yamaguchi K, Someya A, Nagaoka I, Hayashida M. Anti-Inflammatory Action of Dexmedetomidine on Human Microglial Cells. Int J Mol Sci 2022; 23:ijms231710096. [PMID: 36077505 PMCID: PMC9455981 DOI: 10.3390/ijms231710096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation, where inflammatory cytokines are produced in excess, contributes to the pathogenesis of delirium. Microglial cells play a central role in neuroinflammation by producing and releasing inflammatory cytokines in response to infection, tissue damage and neurodegeneration. Dexmedetomidine (DEX) is a sedative, which reduces the incidence of delirium. Thus, we hypothesized that DEX may alleviate delirium by exhibiting anti-inflammatory action on microglia. In the present study, we investigated the anti-inflammatory action of DEX on human microglial HMC3 cells. The results indicated that DEX partially suppressed the IL-6 and IL-8 production by lipopolysaccharide (LPS)-stimulated HMC3 cells as well as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. Furthermore, DEX substantially suppressed IL-6 and IL-8 production by unstimulated HMC3 cells as wells as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. These observations suggest that DEX exhibits anti-inflammatory action on not only LPS-stimulated but also unstimulated microglial cells via the suppression of inflammatory signaling and cytokine production.
Collapse
Affiliation(s)
- Sho Yamazaki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Keisuke Yamaguchi
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-Ku, Tokyo 136-0075, Japan
- Correspondence:
| | - Akimasa Someya
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, 6-8-1 Hinode, Urayasu 279-0013, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| |
Collapse
|
6
|
Han QQ, Li XY, Wang YX. Dexmedetomidine attenuates lipopolysaccharide-induced inflammation through macrophageal IL-10 expression following α7 nAchR activation. Int Immunopharmacol 2022; 109:108920. [PMID: 35691275 DOI: 10.1016/j.intimp.2022.108920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Dexmedetomidine, a highly selective α2-adrenoceptor agonist, has been recently reported to alleviate systemic inflammatory response induced by lipopolysaccharide (LPS), in addition to its sedative, analgesic, bradycardic and hypotensive properties. This study aimed to illustrate the molecular mechanisms underlying dexmedetomidine-induced anti-inflammation. In the LPS-pretreated mice, subcutaneous injection of dexmedetomidine reduced the spleen weight as well as serum and spleen expression of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β, and increased serum and spleen expression of IL-10, a known anti-inflammatory cytokine. In addition, dexmedetomidine-attenuated proinflammatory cytokine reduction was entirely inhibited by selective α7 nicotinic acetylcholine receptor (nAChR) antagonist methyllycaconitine but not α2-adrenoceptor antagonist yohimbine. Dexmedetomidine also increased macrophageal IL-10 expression in the presence and absence of LPS, which was also attenuated by methyllycaconitine but not yohimbine. Furthermore, the stimulatory effect of dexmedetomidine on the expression of IL-10 was also reduced by the α7 nAChR gene silencer siRNA/α7 nAChR. Lastly, pretreatment with the IL-10 neutralizing antibody reversed dexmedetomidine-supressed expression of proinflammatory cytokines. Our findings illustrate that dexmedetomidine-induced anti-inflammation is through macrophageal expression of IL-10 following activation of α7 nAchRs but not α2-adrenoceptors.
Collapse
Affiliation(s)
- Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|