1
|
Koirala N, Poudel M, Shrivastava AK, Subba RK, Panthi M, Paudel S, Almarhoon ZM, Sharifi-Rad J, Calina D. Multifaceted role of heparin in oncology: from anticoagulation to anticancer mechanisms and clinical implications. Discov Oncol 2025; 16:231. [PMID: 39992596 PMCID: PMC11850695 DOI: 10.1007/s12672-025-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Heparin, traditionally known for its anticoagulant properties, has recently been identified as a potential agent in cancer therapy. Its derivatives, including low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH), are being investigated for their multifaceted roles in oncology. This review focuses on the expanding exploration of heparin's anticancer effects and its possible integration into cancer treatment protocols. The primary aim is to consolidate and analyze current research on the anticancer properties of heparin and its derivatives. It seeks to illuminate the mechanisms by which these compounds influence cancer progression, including their impact on angiogenesis, tumor cell proliferation, immune response modulation, and the inhibition of cancer cell migration and invasion. Additionally, the review aims to evaluate the potential of heparin and its derivatives in complementing existing chemotherapy treatments. An extensive literature review was conducted, encompassing in vitro, in vivo, and clinical studies. Sources included a range of scientific databases, employing keywords related to heparin and oncology. The selected studies were critically reviewed to extract relevant data on the efficacy, mechanisms, and potential clinical applications of heparin in cancer therapy. The results reveals that heparin and its derivatives exhibit significant anticancer activity across various research settings; key findings include the inhibition of angiogenesis, reduction in tumor cell proliferation, stimulation of immune responses, and the limitation of cancer cell migration and invasion. The compounds also show promise as adjuncts to conventional chemotherapy, potentially enhancing the efficacy of existing cancer treatments. This review highlights the burgeoning role of heparin and its derivatives in the realm of cancer therapy, marking a shift from their traditional use as anticoagulants. While promising, the research underscores the need for further comprehensive studies to fully understand the mechanisms of action, optimal dosing, potential side effects, and patient selection criteria. The potential integration of heparin into cancer treatment regimens opens new therapeutic possibilities warranting continued investigation in this rapidly evolving field.
Collapse
Affiliation(s)
- Niranjan Koirala
- Specialized Research Center, Nepal Academy of Science and Technology, Pokhara, Gandaki, Nepal.
| | - Melina Poudel
- Department of Chemical and Biological Sciences, Youngstown State University, 1 Tressel Way, Youngstown, OH, 44555, USA
| | - Amit Kumar Shrivastava
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular Biosciences Graduate program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Romit Kumar Subba
- College of Pharmacy, Gachon University, Hambakmoe-ro, Incheon, 21936, Republic of Korea
| | - Mamata Panthi
- College of Pharmacy, Gachon University, Hambakmoe-ro, Incheon, 21936, Republic of Korea
| | - Samrat Paudel
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Guo X, Zuo Z, Wang X, Sun Y, Xu D, Liu G, Tong Y, Zhang Z. Epidemiology, risk factors and mechanism of breast cancer and atrial fibrillation. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:92. [PMID: 39716319 DOI: 10.1186/s40959-024-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Cancer and cardiovascular diseases are leading causes of death worldwide. Among them, breast cancer is one of the most common malignancies in women, while atrial fibrillation is one of the most extensively studied arrhythmias, with significant public health implications. As the global population ages and advancements in cancer treatments continue, the survival rates of breast cancer patients have significantly improved, leading to an increasing coexistence of breast cancer and atrial fibrillation. However, the mechanisms underlying this coexistence remain insufficiently studied, and there is no consensus on the optimal treatment strategies for these patients. This review consolidates existing research to systematically explore the epidemiological characteristics, risk factors, and pathophysiological mechanisms of both breast cancer and atrial fibrillation. It focuses on the unique signaling pathways associated with different molecular subtypes of breast cancer and their potential impact on the mechanisms of atrial fibrillation. Additionally, the relationship between atrial fibrillation treatment medications and breast cancer is discussed. These insights not only provide essential evidence for the precise prevention and management of atrial fibrillation in breast cancer patients but also lay a solid theoretical foundation for interdisciplinary clinical management practices.
Collapse
Affiliation(s)
- Xiaoxue Guo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zheng Zuo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xishu Wang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ying Sun
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Dongyang Xu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Guanghui Liu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yi Tong
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
3
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
4
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Meher MK, Naidu G, Mishra A, Poluri KM. A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. Int J Biol Macromol 2024; 260:129379. [PMID: 38242410 DOI: 10.1016/j.ijbiomac.2024.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Cifuentes SJ, Domenech M. Heparin-collagen I bilayers stimulate FAK/ERK½ signaling via α2β1 integrin to support the growth and anti-inflammatory potency of mesenchymal stromal cells. J Biomed Mater Res A 2024; 112:65-81. [PMID: 37723658 DOI: 10.1002/jbm.a.37614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high-quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin-HEP interactions in the advantages of MSC culture. The layer-by-layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50 and IC75 levels of BTT-3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow-derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP-ending HEP/COL surfaces significantly increased FAK-ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL-ending HEP/COL and uncoated surfaces. BTT-3033 but not Cilengitide treatment markedly affected FAK-ERK½ activity levels on HEP-ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT-3033 treatment on HEP-ending bilayers reduced MSC-mediated macrophage inhibitory activity and altered the cytokine profile of co-cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1-FAK-ERK½ signaling mechanism.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| |
Collapse
|
8
|
Li M, Xue Y, Chi L, Jin L. Heparin Oligosaccharides as Vasoactive Intestinal Peptide Inhibitors via their Binding Process Characterization. Curr Protein Pept Sci 2024; 25:480-491. [PMID: 38284716 DOI: 10.2174/0113892037287189240122110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP. METHODS Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.
Collapse
Affiliation(s)
- Meixin Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Yaqi Xue
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lianli Chi
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lan Jin
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Feng K, Wang K, Zhou Y, Xue H, Wang F, Jin H, Zhao W. Non-Anticoagulant Activities of Low Molecular Weight Heparins-A Review. Pharmaceuticals (Basel) 2023; 16:1254. [PMID: 37765064 PMCID: PMC10537022 DOI: 10.3390/ph16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Low molecular weight heparins (LMWHs) are derived from heparin through chemical or enzymatic cleavage with an average molecular weight (Mw) of 2000-8000 Da. They exhibit more selective activities and advantages over heparin, causing fewer side effects, such as bleeding and heparin-induced thrombocytopenia. Due to different preparation methods, LMWHs have diverse structures and extensive biological activities. In this review, we describe the basic preparation methods in this field and compare the main principles and advantages of these specific methods in detail. Importantly, we focus on the non-anticoagulant pharmacological effects of LMWHs and their conjugates, such as preventing glycocalyx shedding, anti-inflammatory, antiviral infection, anti-fibrosis, inhibiting angiogenesis, inhibiting cell adhesion and improving endothelial function. LMWHs are effective in various diseases at the animal level, including cancer, some viral diseases, fibrotic diseases, and obstetric diseases. Finally, we briefly summarize their usage and potential applications in the clinic to promote the development and utilization of LMWHs.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Yu Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Haoyu Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Fang Wang
- Department of Stomatology, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| |
Collapse
|
10
|
Li Y, Lin Y, Jiang Y, Mehwish HM, Rajoka MSR, Zhao L. Expression and characterization of heparinase II with MBP tag from a novel strain, Raoultella NX-TZ-3-15. Arch Microbiol 2022; 204:551. [PMID: 35951138 DOI: 10.1007/s00203-022-03158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
The enzymes are biological macromolecules that biocatalyze certain biochemical reactions without undergoing any modification or degradation at the end of the reaction. In this work, we constructed a recombinant novel Raoultella sp. NX-TZ-3-15 strain that produces heparinase with a maltose binding tag to enhance its production and activity. Additionally, MBP-heparinase was purified and its enzymatic capabilities are investigated to determine its industrial application. Moreover, the recombinant plasmid encoding the MBP-heparinase fusion protein was effectively generated and purified to a high purity. According to SDS-PAGE analysis, the MBP-heparinase has a molecular weight of around 70 kDa and the majority of it being soluble with a maximum activity of 5386 U/L. It has also been noted that the three ions of Ca2 + , Co2 + , and Mg2 + can have an effect on heparinase activities, with Mg2 + being the most noticeable, increasing by about 85%, while Cu2 + , Fe2 + , Zn2 + having an inhibitory effect on heparinase activities. Further investigations on the mechanistic action, structural features, and genomes of Raoultella sp. NX-TZ-3-15 heparinase synthesis are required for industrial-scale manufacturing.
Collapse
Affiliation(s)
- Yinyin Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Yue Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Yingzi Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Hafiza Mahreen Mehwish
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
12
|
An indicator displacement assay-based optical chemosensor for heparin with a dual-readout and a reversible molecular logic gate operation based on the pyranine/methyl viologen. Biosens Bioelectron 2021; 194:113612. [PMID: 34507094 DOI: 10.1016/j.bios.2021.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
We have reported an optical indicator displacement assay (IDA) for heparin with a UV-vis absorbance and fluorescence dual-readout based on pyranine/methyl viologen (MV2+). Upon introducing heparin, pyranine/MV2+ shows a clearly observable increase in UV-vis absorbance and a turn-on of the fluorescence signal. We have demonstrated that the ionic nature of buffers significantly affects the pyranine displacement and the zwitterionic HEPES was most suitable for heparin sensing. After careful screening of experimental conditions, the pyranine/MV2+-based optical chemosensor exhibits a fast, sensitive, and selective response toward heparin. It shows dynamic linear concentration of heparin in the ranges of 0.1-40 U·mL-1 and 0.01-20 U·mL-1 for the absorptive and fluorescent measurements, respectively, which both cover the clinically relevant levels of heparin. As with the animal experiments, the optical chemosensor has been demonstrated to be selective and effective for heparin level qualification in rat plasma. The chemosensor is readily accessible, cost-effective, and reliable, which holds a great promise for potential application on clinical and biological studies. Furthermore, this IDA system can serve as an IMPLICATION logic gate with a reversible and switchable logical manner.
Collapse
|
13
|
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis. Sci Rep 2021; 11:23231. [PMID: 34853364 PMCID: PMC8636484 DOI: 10.1038/s41598-021-02482-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.
Collapse
|
14
|
Banik N, Yang SB, Kang TB, Lim JH, Park J. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Int J Mol Sci 2021; 22:ijms221910524. [PMID: 34638867 PMCID: PMC8509054 DOI: 10.3390/ijms221910524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Collapse
Affiliation(s)
- Nipa Banik
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Seong-Bin Yang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Tae-Bong Kang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Ji-Hong Lim
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jooho Park
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence:
| |
Collapse
|
15
|
Tumor-suppressing effect of bartogenic acid in ovarian (SKOV-3) xenograft mouse model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1815-1826. [PMID: 34255109 DOI: 10.1007/s00210-021-02088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Bartogenic acid (BA), a natural pentacyclic triterpenoid, proved to have chemomodulatory, anticancer, antidiabetic, anti-arthritic, and anti-inflammatory activity. Based on structure-activity relationship (SAR) approaches, BA has close structural resemblance to oleanolic acid and ursolic acid. These two pentacyclic triterpenoids are well accepted with respect to their therapeutic value in various ailments including anti-cancer activity. The aim of this study is to evaluate the efficacy of BA as a possible antitumor agent, along with its safety in SKOV-3 ovarian cancer. In vitro cytotoxicity of BA and paclitaxel on human ovarian cancer cells (SKOV-3) was assessed using MTT assay. Antitumor potential of BA alone, standard anticancer drug (paclitaxel) alone, and BA in combination with paclitaxel were evaluated in SKOV-3 xenografted SCID mice. Immunohistochemical analysis of NF-κB was performed and analyzed in SKOV-3 tumors. BA alone and BA in combination with paclitaxel significantly inhibited the tumor growth. IC50 of BA was found to be 15.72 μM. Similarly, paclitaxel showed significant antitumor effect with IC50 of 3.234 μM. Treatments of paclitaxel, BA, and combination of BA with paclitaxel were well tolerated during treatment period. Immunohistochemical analysis of NF-κB in SKOV-3 tumors treated with BA in combination with paclitaxel revealed antitumor effect in terms of inhibition of NF-κB. Our results suggested that BA exhibits promising antitumor effect in the restriction of SKOV-3 cells and tumors with considerable safety.
Collapse
|