1
|
Kumar M, Baig MS, Bhardwaj K. Advancements in the development of antivirals against SARS-Coronavirus. Front Cell Infect Microbiol 2025; 15:1520811. [PMID: 39917633 PMCID: PMC11798951 DOI: 10.3389/fcimb.2025.1520811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused an outbreak in 2002-2003, spreading to 29 countries with a mortality rate of about 10%. Strict quarantine and infection control methods quickly stopped the spread of the disease. Later research showed that SARS-CoV came from animals (zoonosis) and stressed the possibility of a similar spread from host to human, which was clearly shown by the COVID-19 outbreak. The COVID-19 pandemic, instigated by SARS-CoV-2, has affected 776 million confirmed cases and more than seven million deaths globally as of Sept 15, 2024. The existence of animal reservoirs of coronaviruses continues to pose a risk of re-emergence with improved fitness and virulence. Given the high death rate (up to 70 percent) and the high rate of severe sickness (up to 68.7 percent in long-COVID patients), it is even more critical to identify new therapies as soon as possible. This study combines research on antivirals that target SARS coronaviruses that have been conducted over the course of more than twenty years. It is a beneficial resource that might be useful in directing future studies.
Collapse
Affiliation(s)
- Mrityunjay Kumar
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Mirza Sarwar Baig
- Centre for Virology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India
| | - Kanchan Bhardwaj
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
2
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
3
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
4
|
Gonzalez BL, de Oliveira NC, Ritter MR, Tonin FS, Melo EB, Sanches ACC, Fernandez‐Llimos F, Petruco MV, de Mello JCP, Chierrito D, de Medeiros Araújo DC. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review. Phytother Res 2022; 36:2686-2709. [PMID: 35355337 PMCID: PMC9111026 DOI: 10.1002/ptr.7442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.
Collapse
Affiliation(s)
| | | | | | - Fernanda Stumpf Tonin
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade Federal do Paraná—UFPRCuritibaParanáBrazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do Paraná—UNIOESTECascavelParanáBrazil
| | | | | | | | | | - Danielly Chierrito
- Departamento de FarmáciaUniversidade Estadual de Maringá—UEMMaringáParanáBrazil
| | | |
Collapse
|
5
|
Jha P, Saluja D, Chopra M. Structure-guided pharmacophore based virtual screening, docking, and molecular dynamics to discover repurposed drugs as novel inhibitors against endoribonuclease Nsp15 of SARS-CoV-2. J Biomol Struct Dyn 2022:1-11. [PMID: 35652904 DOI: 10.1080/07391102.2022.2079561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 (Corona Virus Disease of 2019) caused by the novel 'Severe Acute Respiratory Syndrome Coronavirus-2' (SARS-CoV-2) has wreaked havoc on human health and the global economy. As a result, for new medication development, it's critical to investigate possible therapeutic targets against the novel virus. 'Non-structural protein 15' (Nsp15) endonuclease is one of the crucial targets which helps in the replication of virus and virulence in the host immune system. Here, in the current study, we developed the structure-based pharmacophore model based on Nsp15-UMP interactions and virtually screened several databases against the selected model. To validate the screening process, we docked the top hits obtained after secondary filtering (Lipinski's rule of five, ADMET & Topkat) followed by 100 ns molecular dynamics (MD) simulations. Next, to revalidate the MD simulation studies, we have calculated the binding free energy of each complex using the MM-PBSA procedure. The discovered repurposed drugs can aid the rational design of novel inhibitors for Nsp15 of the SARS-CoV-2 enzyme and may be considered for immediate drug development.
Collapse
Affiliation(s)
- Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| |
Collapse
|
6
|
Yashvardhini N, Jha DK, Kumar A, Gaurav M, Sayrav K. Genome sequence analysis of nsp15 from SARS-CoV-2. Bioinformation 2022; 18:432-437. [PMID: 36909703 PMCID: PMC9997503 DOI: 10.6026/97320630018432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome), a causative agent of COVID-19 disease created a pandemic situation worldwide. Nsp15 is a uridine specific endoribonuclease encoded by the genome of SARS-CoV-2. It plays important role in processing viral RNA and, thus evades the host immune system. Therefore, it is of interest to identify mutants of nsp15 amongst Asian SARS-CoV-2 isolates, where a total of 1795 mutations, from 7793 sequences of Asia submitted till 31st January 2022, amongst which A231V, H234Y, K109N, K259R and S261A mutations were found frequent. Hence, we report data on the predicted secondary structure of wild type form followed by hydropathy plot, physiochemical properties, Ramachandran plot, B-cell epitopes prediction and protein modeling of wild type and mutant of nsp15 protein. Data shows that nsp15 of SARS-CoV-2 is a pontential candidate for the development of vaccine to control the infections of SARS-CoV-2.
Collapse
Affiliation(s)
- Niti Yashvardhini
- Department of Microbiology, Patna Women’s College, Patna, 800 001, Bihar, India
| | - Deepak Kumar Jha
- Department of Zoology, S.M.P. Girls Degree College, Ballia, 277401, Uttar Pradesh, India
| | - Amit Kumar
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Manjush Gaurav
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Kumar Sayrav
- Department of Chemistry, V.K.S. University, Ara-802301, Bihar India
| |
Collapse
|
7
|
High throughput screening identifies inhibitors for parvovirus B19 infection of human erythroid progenitor cells. J Virol 2021; 96:e0132621. [PMID: 34669461 DOI: 10.1128/jvi.01326-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or the prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high throughput screening assay, which is based on an in vitro nicking assay using recombinant N-terminal 1-176 amino acids of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds demonstrated >50% in vivo inhibition of B19V infection at 10 μM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7), demonstrated an antiviral effect (EC50=1.46 μM) without prominent cytotoxicity (CC50=71.8 μM) in EPCs, exhibited 92% inhibition of B19V infection in EPCs at 3.32 μM, which can be used as the lead compound in future studies for the treatment of B19V infection caused hematological disorders. Importance B19V encodes a large non-structural protein NS1. Its N-terminal domain (NS1N) consisting of 1-176 amino acids binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling hairpin-dependent B19V DNA replication. For high throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the trs and the NS1N protein, into a 384-well plate format. The HTS assay showed a high reliability and capability in screening 17,040 compounds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 μM (two times EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.
Collapse
|
8
|
The Role of Coronavirus RNA-Processing Enzymes in Innate Immune Evasion. Life (Basel) 2021; 11:life11060571. [PMID: 34204549 PMCID: PMC8235370 DOI: 10.3390/life11060571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Viral RNA sensing triggers innate antiviral responses in humans by stimulating signaling pathways that include crucial antiviral genes such as interferon. RNA viruses have evolved strategies to inhibit or escape these mechanisms. Coronaviruses use multiple enzymes to synthesize, modify, and process their genomic RNA and sub-genomic RNAs. These include Nsp15 and Nsp16, whose respective roles in RNA capping and dsRNA degradation play a crucial role in coronavirus escape from immune surveillance. Evolutionary studies on coronaviruses demonstrate that genome expansion in Nidoviruses was promoted by the emergence of Nsp14-ExoN activity and led to the acquisition of Nsp15- and Nsp16-RNA-processing activities. In this review, we discuss the main RNA-sensing mechanisms in humans as well as recent structural, functional, and evolutionary insights into coronavirus Nsp15 and Nsp16 with a view to potential antiviral strategies.
Collapse
|
9
|
Wang M, Withers JB, Ricchiuto P, Voitalov I, McAnally M, Sanchez HN, Saleh A, Akmaev VR, Ghiassian SD. A systems-based method to repurpose marketed therapeutics for antiviral use: a SARS-CoV-2 case study. Life Sci Alliance 2021; 4:e202000904. [PMID: 33593923 PMCID: PMC7893815 DOI: 10.26508/lsa.202000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023] Open
Abstract
This study describes two complementary methods that use network-based and sequence similarity tools to identify drug repurposing opportunities predicted to modulate viral proteins. This approach could be rapidly adapted to new and emerging viruses. The first method built and studied a virus-host-physical interaction network; a three-layer multimodal network of drug target proteins, human protein-protein interactions, and viral-host protein-protein interactions. The second method evaluated sequence similarity between viral proteins and other proteins, visualized by constructing a virus-host-similarity interaction network. Methods were validated on the human immunodeficiency virus, hepatitis B, hepatitis C, and human papillomavirus, then deployed on SARS-CoV-2. Comparison of virus-host-physical interaction predictions to known antiviral drugs had AUCs of 0.69, 0.59, 0.78, and 0.67, respectively, reflecting that the scores are predictive of effective drugs. For SARS-CoV-2, 569 candidate drugs were predicted, of which 37 had been included in clinical trials for SARS-CoV-2 (AUC = 0.75, P-value 3.21 × 10-3). As further validation, top-ranked candidate antiviral drugs were analyzed for binding to protein targets in silico; binding scores generated by BindScope indicated a 70% success rate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alif Saleh
- Scipher Medicine Corporation, Waltham, MA, USA
| | | | | |
Collapse
|
10
|
Savale RU, Bhowmick S, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Patil PC, Islam MA. Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Arch Biochem Biophys 2021; 700:108771. [PMID: 33485847 PMCID: PMC7825923 DOI: 10.1016/j.abb.2021.108771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.
Collapse
Affiliation(s)
- Rutuja Umesh Savale
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dalal Saied Abdullah
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|