1
|
Karunakaran U, Ha EY, Elumalai S, Won KC, Moon JS. Mitochondrial ALDH2 improves ß-cell survival and function against doxorubicin-induced apoptosis by targeting CK2 signaling. J Diabetes Investig 2024; 15:684-692. [PMID: 38713732 PMCID: PMC11143424 DOI: 10.1111/jdi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024] Open
Abstract
AIMS The aim of this study was to better understand how the chemotherapy drug doxorubicin contributes to the development of β-cell dysfunction and to explore its relationship with mitochondrial aldehyde dehydrogenase-2 (ALDH2). MATERIALS AND METHODS In order to investigate this hypothesis, doxorubicin was administered to INS-1 cells, a rat insulinoma cell line, either with or without several target protein activators and inhibitors. ALDH2 activity was detected with a commercial kit and protein levels were determined with western blot. Mitochondrial ROS, membrane potential, and lipid ROS were determined by commercial fluorescent probes. The cell viability was measured by CCK-assay. RESULTS Exposure of INS-1 cells to doxorubicin decreased active insulin signaling resulting in elevated ALDH2 degradation, compared with control cells by the induction of acid sphingomyelinase mediated ceramide induction. Further, ceramide induction potentiated doxorubicin induced mitochondrial dysfunction. Treatment with the ALDH2 agonist, ALDA1, blocked doxorubicin-induced acid sphingomyelinase activation which significantly blocked ceramide induction and mitochondrial dysfunction mediated cell death. Treatment with the ALDH2 agonist, ALDA1, stimulated casein kinase-2 (CK2) mediated insulin signaling activation. CK2 silencing neutralized the function of ALDH2 in the doxorubicin treated INS-1 cells. CONCLUSIONS Mitochondrial ALDH2 activation could inhibit the progression of doxorubicin induced pancreatic β-cell dysfunction by inhibiting the acid sphingomyelinase induction of ceramide, by regulating the activation of CK2 signaling. Our research lays the foundation of ALDH2 activation as a therapeutic target for the precise treatment of chemotherapy drug induced β-cell dysfunction.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Institute of Medical ScienceYeungnam University College of MedicineDaeguRepublic of Korea
| | - Eun Yeong Ha
- Department of Internal MedicineYeungnam University College of MedicineDaeguRepublic of Korea
- Department of Internal MedicineKeimyung University Dongsan Hospital, Keimyung University School of MedicineDaeguRepublic of Korea
| | - Suma Elumalai
- Institute of Medical ScienceYeungnam University College of MedicineDaeguRepublic of Korea
| | - Kyu Chang Won
- Institute of Medical ScienceYeungnam University College of MedicineDaeguRepublic of Korea
- Department of Internal MedicineYeungnam University College of MedicineDaeguRepublic of Korea
| | - Jun Sung Moon
- Institute of Medical ScienceYeungnam University College of MedicineDaeguRepublic of Korea
- Department of Internal MedicineYeungnam University College of MedicineDaeguRepublic of Korea
| |
Collapse
|
2
|
Hasan AU, Obara M, Sato S, Kondo Y, Taira E. CD146/MCAM links doxorubicin-induced epigenetic dysregulation to the impaired fatty acid transportation in H9c2 cardiomyoblasts. Biochem Biophys Res Commun 2024; 693:149370. [PMID: 38100998 DOI: 10.1016/j.bbrc.2023.149370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
CD146/MCAM has garnered significant attention for its potential contribution to cardiovascular disease; however, the transcriptional regulation and functions remain unclear. To explore these processes regarding cardiomyopathy, we employed doxorubicin, a widely used stressor for cardiomyocytes. Our in vitro study on H9c2 cardiomyoblasts highlights that, besides impairing the fatty acid uptake in the cells, doxorubicin suppressed the expression of fatty acid binding protein 4 (Fabp4) along with the histone deacetylase 9 (Hdac9), bromodomain and extra-terminal domain proteins (BETs: Brd2 and Brd4), while augmented the production of CD146/MCAM. Silencing and chemical inhibition of Hdac9 further augmented CD146/MCAM and deteriorated fatty acid uptake. In contrast, chemical inhibition of BETs as well as silencing of MCAM/CD146 ameliorated fatty acid uptake. Moreover, protein kinase C (PKC) inhibition abrogated CD146/MCAM, particularly in the nucleus. Taken together, our results suggest that epigenetic dysregulation of Hdac9, Brd2, and Brd4 alters CD146/MCAM expression, deteriorating fatty acid uptake by downregulating Fabp4. This process depends on the PKC-mediated nuclear translocation of CD146. Thus, this study highlights a pivotal role of CD146/MCAM in doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Arif Ul Hasan
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan; Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan.
| | - Mami Obara
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Sachiko Sato
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yukiko Kondo
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Eiichi Taira
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
3
|
Xiong D, Yang J, Li D, Wang J. Exploration of Key Immune-Related Transcriptomes Associated with Doxorubicin-Induced Cardiotoxicity in Patients with Breast Cancer. Cardiovasc Toxicol 2023; 23:329-348. [PMID: 37684436 PMCID: PMC10514147 DOI: 10.1007/s12012-023-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Based on a few studies, heart failure patients with breast cancer were assessed to find potential biomarkers for doxorubicin-induced cardiotoxicity. However, key immune-related transcriptional markers linked to doxorubicin-induced cardiotoxicity in breast cancer patients have not been thoroughly investigated. We used GSE40447, GSE76314, and TCGA BRCA cohorts to perform this study. Then, we performed various bioinformatics approaches to identify the key immune-related transcriptional markers and their association with doxorubicin-induced cardiotoxicity in patients with breast cancer. We found 255 upregulated genes and 286 downregulated genes in patients with doxorubicin-induced heart failure in breast cancer. We discovered that in patients with breast cancer comorbidity doxorubicin-induced cardiotoxicity, the 58 immunological genes are elevated (such as CPA3, VSIG4, GATA2, RFX2, IL3RA, and LRP1), and the 60 genes are significantly suppressed (such as MS4A1, FCRL1, CD200, FCRLA, FCRL2, and CD79A). Furthermore, we revealed that the immune-related differentially expressed genes (DEGs) are substantially associated with the enrichment of KEGG pathways, including B-cell receptor signaling pathway, primary immunodeficiency, chemokine signaling pathway, hematopoietic cell lineage, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, focal adhesion, dilated cardiomyopathy, cell adhesion molecule, etc. Moreover, we discovered that the doxorubicin-induced immune-related genes are crucially involved in the protein-protein interaction and gene clusters. The immune-related genes, including IFIT5, XCL1, SPIB, BTLA, MS4A1, CD19, TCL1A, CD83, CD200, FCRLA, CD79A, BIRC3, and IGF2R are significantly associated with a poor survival prognosis of breast cancer patients and showed diagnostic efficacy in patients with breast cancer and heart failure. Molecular docking revealed that the survival-associated genes interact with the doxorubicin with appreciable binding affinity. Finally, we validated the expression level of immune-related genes in breast cancer patients-derived cardiomyocytes with doxorubicin-induced cardiotoxicity and found that the level of RAD9A, HSPA1B, GATA2, IGF2R, CD200, ERCC8, and BCL11A genes are consistently dysregulated. Our findings offered a basis for understanding the mechanism and pathogenesis of the cardiotoxicity caused by doxorubicin in breast cancer patients and predicted the interaction of immune-related potential biomarkers with doxorubicin.
Collapse
Affiliation(s)
- Daiqin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dongfeng Li
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
4
|
Tan X, Zhang R, Lan M, Wen C, Wang H, Guo J, Zhao X, Xu H, Deng P, Pi H, Yu Z, Yue R, Hu H. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother 2023; 162:114733. [PMID: 37087977 DOI: 10.1016/j.biopha.2023.114733] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Rongyi Zhang
- Department of Cardiology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Junsong Guo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hui Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|