1
|
Zhao L, Liu W, Wang F. Research progress on ADAM28 in malignant tumors. Discov Oncol 2025; 16:566. [PMID: 40252142 PMCID: PMC12009250 DOI: 10.1007/s12672-025-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
A disintegrin and metalloproteinase (ADAM) 28 belongs to the zinc-dependent metalloproteinase superfamily and has a signal sequence at its N-terminus that can direct the protein into the secretory pathway. ADAM28 is a multifunctional protein that has been shown to play a role in regulating numerous biological processes, including cell adhesion, cell fusion, membrane protein shedding, protein hydrolysis, and signaling pathway modulation. ADAM28 is highly expressed in numerous malignant tumors and plays a pivotal role in the proliferation, metastasis and drug resistance of these tumors by acting on substrates such as IGFBP-3, vWF and CTGF, thereby promoting PSGL-1/P-selectin-mediated cell adhesion. Consequently, inhibiting ADAM28 could impede tumor proliferation, metastasis and drug resistance, which suggests that ADAM28 may serve as a prognostic indicator of and potential therapeutic target for malignant tumors. In this article, the structure and function of ADAM28 and its correlation with the onset and progression of human malignant tumors are primarily examined. Additionally, the potential applications of ADAM28 in tumor research are investigated to offer a theoretical foundation and reference for the clinical diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanlan Zhao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China
| | - Wei Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China
| | - Fei Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Zi J, Yu L, Wang L, Li D, Du X, Chen H, Zhang J, Jiang Y. ADAM28 promotes epithelial mesenchymal transition and impairs tight junctions in non-eosinophilic chronic rhinosinusitis with nasal polyps by inducing M1 polarization of macrophages. Int Immunopharmacol 2025; 150:114276. [PMID: 39954661 DOI: 10.1016/j.intimp.2025.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by tight junction dysfunction associated with epithelial-mesenchymal transition (EMT) processing. ADAM28 participates in the pathogenic process of inflammatory airway diseases. METHODS The effects of ADAM28 knockdown on the expression levels of the M1-type macrophage markers were examined using M1-type macrophage polarization model established with the THP1 cells. An inflammation model was established by collecting cell supernatants from M1-polarized macrophages with stable ADAM28 knockdown to stimulate HNEPC and primary nasal mucosal epithelial cells (pHNECs).The expression levels of EMT markers and tight junction proteins were detected. RESULTS ADAM28 was highly expressed in non-eosinophilic CRSwNP (NE-CRSwNP) and correlated with NE-CRSwNP clinical scores. Immunofluorescence assay demonstrated that the number of ADAM28-positive macrophages significantly increased in the NE-CRSwNP group compared with the control group. In addition, ADAM28 levels were significantly elevated in M1-type macrophages. ADAM28 knockdown significantly reduced the expression levels of M1-type macrophage polarization markers in M1 macrophages. Furthermore, ADAM28 knockdown elevated the expression of EMT marker E-cadherin and decreased the expression of α-SMA in HNEPC and pHNECs. Additionally, ADAM28 knockdown increased the expression levels of tight junction proteins in pHNECs cultured at an air-liquid interface. CONCLUSION ADAM28 is markedly elevated in NE-CRSwNP and is correlated with the clinical scores of NE-CRSwNP. ADAM28 induces the M1-type polarization of macrophages. ADAM28 promotes EMT and impairs tight junctions of nasal epithelia by inducing M1-type polarization of macrophages.
Collapse
Affiliation(s)
- Jiajia Zi
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Longgang Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Danyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Xiaoyun Du
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Han Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China
| | - Jisheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China.
| | - Yan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao 266003 China.
| |
Collapse
|
3
|
Zhu Y, Zhu Y, Deng Q, Liang X. Hepatitis B Virus X Protein promotes VWF-mediated HCC progression through ST8SIA6-AS1/miR-3150b-3p/ASCL1 axis. Eur J Pharmacol 2025; 991:177315. [PMID: 39884328 DOI: 10.1016/j.ejphar.2025.177315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors, often with a poor prognosis. The HBx protein, encoded by the hepatitis B virus (HBv), is significantly associated with the pathogenesis of HCC. Although studies suggested that the von Willebrand factor (vWF) is key to the progression of HCC associated with HBv, the underlying mechanisms are largely obscure. Here we report that high vWF expression predicts poor prognosis in HCC patients infected with HBv. In vitro studies have shown that vWF enhances the migration, invasion, proliferation, and epithelial-mesenchymal transition (EMT) of HCC associated with HBv, and also inhibits apoptosis. We demonstrated that HBv-encoded oncogene X protein (HBx), a core protein of HBv expression can facilitate the transcription of vWF through the upregulation of ASCL1. Furthermore, miR-3150b-3p, which is negatively regulated by HBx, was screened to bind to the 3'UTR of ASCL1 and mediate ASCL1 silencing. Finally, we found that ST8SIA6-AS1 is positively regulated by HBx, which could sponge miR-3150b-3p, consequently impacting the expression of ASCL1 and ultimately alters the protein levels of vWF. In conclusion, our study identified that Hepatitis B Virus X Protein affected vWF level in HBv-related HCC through ST8SIA6-AS1/miR-3150b-3p/ASCL1 axis, which in turn promoted tumor malignant progression.
Collapse
Affiliation(s)
- Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yifei Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinyi Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Jiang J, Chen Y, Zheng Y, Ding Y, Wang H, Zhou Q, Teng L, Zhang X. Sialic acid metabolism-based classification reveals novel metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in gastric cancer. Cancer Cell Int 2025; 25:61. [PMID: 39987095 PMCID: PMC11847363 DOI: 10.1186/s12935-025-03695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND High heterogeneity in gastric cancer (GC) remains a challenge for standard treatments and prognosis prediction. Dysregulation of sialic acid metabolism (SiaM) is recognized as a key metabolic hallmark of tumor immune evasion and metastasis. Herein, we aimed to develop a SiaM-based metabolic classification in GC. METHODS SiaM-related genes were obtained from the MsigDB database. Bulk and single-cell transcriptional data of 956 GC patients were acquired from the GEO, TCGA, and MEDLINE databases. Proteomic profiles of 20 GC samples were derived from our institution. The consensus clustering algorithm was applied to identify SiaM-based clusters. The SiaM-based model was established via LASSO regression and evaluated via Kaplan‒Meier curve and ROC curve analyses. In vitro and in vivo experiments were conducted to explore the function of ST3GAL1 in GC. RESULTS Three SiaM clusters presented distinct patterns of clinicopathological features, transcriptomic alterations, and tumor immune microenvironment landscapes in GC. Compared with clusters A and B, cluster C presented elevated SiaM activity, higher metastatic potential, more abundant immunosuppressive features, and a worse prognosis. Based on the differentially expressed genes between these clusters, a risk model for six genes (ARHGAP6, ST3GAL1, ADAM28, C7, PLCL1, and TTC28) was then constructed. The model exhibited robust performance in predicting peritoneal metastasis and prognosis in four independent cohorts. As a hub gene in the model, ST3GAL1 promoted GC cell migration and invasion in vitro and in vivo. CONCLUSIONS Our study proposed a novel SiaM-based classification that identified three metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in GC.
Collapse
Affiliation(s)
- Junjie Jiang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyong Wang
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhu Y, Lu Y, Zhu Y, Ren X, Deng Q, Yang M, Liang X. ST2L promotes VEGFA-mediated angiogenesis in gastric cancer by activating TRAF6/PI3K/Akt/NF-κB pathway via IL-33. Sci Rep 2024; 14:26393. [PMID: 39488565 PMCID: PMC11531471 DOI: 10.1038/s41598-024-76763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Suppression of Tumorigenicity 2 (ST2) is a member of the interleukin-1 receptor/ Toll-like receptor superfamily, and its specific ligand is Interleukin-33 (IL-33). IL-33/ ST2 signaling has been implicated in numerous inflammatory and allergic diseases, as well as in promoting malignant behavior of tumor cells and angiogenesis. However, the precise role of ST2 in gastric cancer angiogenesis remains incompletely elucidated. We observed a significant correlation between high expression of ST2 in gastric cancer tissues and poor prognosis, along with various clinicopathological features. In vitro experiments demonstrated that the IL-33/ ST2 axis activates the PI3K/AKT/NF-κB signaling pathway through TRAF6, thereby promoting VEGFA-mediated tumor angiogenesis; meanwhile sST2 acts as a decoy receptor to regulate the IL-33/ST2L axis. Consistent findings were also observed in subcutaneous xenograft tumor models in nude mice. Furthermore, we investigated the molecular mechanism by which IL-33 promotes ST2L expression in GC cells via upregulation of transcription factors YY1 and GATA2 through intracellular signaling pathways.
Collapse
Affiliation(s)
- Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yifei Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Xiaolu Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Qinyi Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Muqing Yang
- Department of Hepatobilliary Surgical Center, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo District, Shanghai, China.
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China.
| |
Collapse
|
6
|
Sobol NT, Solerno LM, Llavona C, Alonso DF, Garona J. Vasopressin Analog [V 4Q 5]dDAVP Exerts Cooperative Anticancer Effects in Combination With Low-Dose 5-Fluorouracil on Aggressive Colorectal Cancer Models. World J Oncol 2023; 14:540-550. [PMID: 38022396 PMCID: PMC10681791 DOI: 10.14740/wjon1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-associated mortality worldwide. Despite being an essential component of systemic chemotherapy for advanced CRC, 5-fluorouracil (5-FU) clinical use has severe limitations, such as high toxicity, low selectivity and drug resistance. [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-D-arginine vasopressin) is a peptide vasopressin analog and a selective agonist of the arginine vasopressin type 2 membrane receptor (AVPR2), expressed in microvascular and tumor tissue. This synthetic compound has well-proven antitumor and antimetastatic activity in different tumor types, including metastatic CRC. The objective of this work was to assess the potential combinational benefits in preclinical CRC models after [V4Q5]dDAVP addition to 5-FU. Methods Effects on cellular viability, cell cycle progression, apoptosis and molecular mechanisms associated to [V4Q5]dDAVP treatment in combination with 5-FU were evaluated in murine CT-26 and human COLO-205 cell lines. In vivo, impact of dual therapy was explored on CRC tumor growth and metastatic spread. Results In CRC cells, [V4Q5]dDAVP (1 µM) addition to sub-IC50 5-FU concentrations resulted in the enhancement of cytostatic effects induced by chemotherapy. Reduction of cell viability after combined treatment was associated with cell cycle arrest in the G0/G1 phase, induction of apoptosis and increased gene expression of the cyclin-dependent kinase inhibitor p21 (CDKN1A) and the tumor suppressor p53 (TP53) in malignant cells, as assessed by flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. In vivo, intravenous administration of [V4Q5]dDAVP (0.3 µg/kg) in combination with safe low doses of 5-FU (50 or 80 mg/kg for CT-26 or COLO-205 tumor models, respectively) effectively abrogated CRC growth, reducing aggressiveness of primary lesions and increasing survival of tumor-bearing mice. In addition, concomitant administration of [V4Q5]dDAVP and 5-FU inhibited pulmonary metastasis formation by CT-26 cells in immunocompetent mice, especially reducing macrometastatic disease. Conclusions [V4Q5]dDAVP seems to enhance the efficacy of 5-FU-based chemotherapy in CRC by modulating tumor progression, as well as metastatic dissemination, suggesting its potential role as a safe and cost-effective co-adjuvant agent for the management of advanced CRC.
Collapse
Affiliation(s)
- Natasha T. Sobol
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- These authors contributed equally to the study
| | - Luisina M. Solerno
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- These authors contributed equally to the study
| | - Candela Llavona
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
| | - Daniel F. Alonso
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Jia Y, Huang X, Shi H, Wang M, Chen J, Zhang H, Hou D, Jing H, Du J, Han H, Zhang J. ADAMDEC1 induces EMT and promotes colorectal cancer cells metastasis by enhancing Wnt/β-catenin signaling via negative modulation of GSK3β. Exp Cell Res 2023:113629. [PMID: 37187249 DOI: 10.1016/j.yexcr.2023.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
Colorectal cancer (CRC) is a highly invasive malignant tumor, with a high proliferative capacity and is prone to epithelial-mesenchymal transition (EMT) and subsequent metastasis. A disintegrin and metalloproteinase domain-like decysin 1 (ADAMDEC1) is a proteolytically active metzincin metalloprotease that is invested in extracellular matrix remodeling, cell adhesion, invasion, and migration. However, the effects of ADAMDEC1 on CRC are unclear. The purpose of this research is to investigate the expression and biological role of ADAMDEC1 in CRC. We found that ADAMDEC1 was substantially elevated in both clinical samples and CRC cell lines. Likewise, ADAMDEC1 can enhance CRC cell proliferation, migration, and invasion while inhibiting apoptosis. Interestingly, we discovered that exogenous ADAMDEC1 overexpression triggered epithelial-mesenchymal transition (EMT) in CRC cells, as evidenced by alterations in E-cadherin, N-cadherin, and vimentin expression. In ADAMDEC1-knockdown or ADAMDEC1-overexpressing CRC cells, the Western blotting analysis revealed that downstream targets of Wnt signaling, along with β-catenin, Wnt 4, LEF1, Cyclin D1, and c-Myc, were down-regulated or up-regulated. Furthermore, inhibition of the Wnt/β-catenin pathway by FH535 negated the effect of ADAMDEC1 overexpression on EMT and CRC cell proliferation. Further mechanistic research revealed that ADAMDEC1 knockdown might up-regulate GSK3β and inactivate the Wnt/β-catenin pathway, accompanied by suppressing the expression of β-catenin. Additionally, the blockage of GSK3β by CHIR 99021 markedly abolished the inhibitory effect of ADAMDEC1 knockdown on Wnt/β-catenin signaling. In summary, our findings first indicate that ADAMDEC1 promotes CRC metastasis by negatively regulating GSK3β, activating the Wnt/β-catenin signaling pathway, and inducing EMT, suggesting its potential utility as a therapeutic target for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Yuna Jia
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Xiaoyong Huang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - MingMing Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Jie Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Danyang Hou
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Hongmei Jing
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| | - Huihui Han
- Department of Obstetrics, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi Province, China.
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| |
Collapse
|
8
|
Tao Q, Lu Y, Qi Y, Yu D, Gu J, Zhu Y, Shi C, Liang X. Hypoxia promotes the expression of Von Willebrand factor in breast cancer cells by up-regulating the transcription factor YY1 and down-regulating the hsa-miR-424. Eur J Pharmacol 2022; 934:175308. [DOI: 10.1016/j.ejphar.2022.175308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
|
9
|
Wang B, Zou D, Wang N, Wang H, Zhang T, Gao L, Ma C, Zheng P, Gu B, Li X, Wang Y, He P, Ma Y, Wang X, Chen H. Construction and validation of a novel coagulation-related 7-gene prognostic signature for gastric cancer. Front Genet 2022; 13:957655. [PMID: 36105100 PMCID: PMC9465170 DOI: 10.3389/fgene.2022.957655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Gastric cancer (GC) is the most common malignant tumor. Due to the lack of practical molecular markers, the prognosis of patients with advanced gastric cancer is still poor. A number of studies have confirmed that the coagulation system is closely related to tumor progression. Therefore, the purpose of this study was to construct a coagulation-related gene signature and prognostic model for GC by bioinformatics methods. Methods: We downloaded the gene expression and clinical data of GC patients from the TCGA and GEO databases. In total, 216 coagulation-related genes (CRGs) were obtained from AmiGO 2. Weighted gene co-expression network analysis (WGCNA) was used to identify coagulation-related genes associated with the clinical features of GC. Last absolute shrinkage and selection operator (LASSO) Cox regression was utilized to shrink the relevant predictors of the coagulation system, and a Coag-Score prognostic model was constructed based on the coefficients. According to this risk model, GC patients were divided into high-risk and low-risk groups, and overall survival (OS) curves and receiver operating characteristic (ROC) curves were drawn in the training and validation sets, respectively. We also constructed nomograms for predicting 1-, 2-, and 3-year survival in GC patients. Single-sample gene set enrichment analysis (ssGSEA) was exploited to explore immune cells’ underlying mechanisms and correlations. The expression levels of coagulation-related genes were verified by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: We identified seven CRGs employed to construct a Coag-Score risk model using WGCNA combined with LASSO regression. In both training and validation sets, GC patients in the high-risk group had worse OS than those in the low-risk group, and Coag-Score was identified as an independent predictor of OS, and the nomogram provided a quantitative method to predict the 1-, 2-, and 3-year survival rates of GC patients. Functional analysis showed that Coag-Score was mainly related to the MAPK signaling pathway, complement and coagulation cascades, angiogenesis, epithelial–mesenchymal transition (EMT), and KRAS signaling pathway. In addition, the high-risk group had a significantly higher infiltration enrichment score and was positively associated with immune checkpoint gene expression. Conclusion: Coagulation-related gene models provide new insights and targets for the diagnosis, prognosis prediction, and treatment management of GC patients.
Collapse
Affiliation(s)
- Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dan Zou
- Chengdu Seventh People’s Hospital, Chengdu, China
| | - Na Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haotian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tao Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of oncology, First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Gao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peng Zheng
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuemei Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Puyi He
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yanling Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xueyan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Department of Cancer Center, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Hao Chen,
| |
Collapse
|
10
|
de Seabra Rodrigues Dias IR, Cao Z, Kwok HF. Adamalysins in COVID-19 - Potential mechanisms behind exacerbating the disease. Biomed Pharmacother 2022; 150:112970. [PMID: 35658218 PMCID: PMC9010236 DOI: 10.1016/j.biopha.2022.112970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is a current pandemic that has resulted in nearly 250 million cases and over 5 million deaths. While vaccines have been developed to prevent infection, and most COVID-19 cases end up being fairly light, there are severe cases of COVID-19 that may end up in death, even with adequate healthcare treatment. New options to combat this disease's effects, therefore, could prove to be invaluable in saving lives. Adamalysins are proteins that have several roles in regulating different functions in the human body but are also known to have functions in inflammation. They are also known to have roles in several different diseases, including COVID-19, where ADAM17, in particular, is now well-known to have a prominent role, but also several diseases which include comorbidities that may worsen cases of COVID-19. Therefore, investigating the functions of adamalysins in disease may give us clues to the molecular workings of COVID-19 as well as potentially new therapeutic targets. Understanding these molecular mechanisms may also allow for an understanding of the mechanisms behind the rare severe side effects that occur in response to current COVID-19 vaccines, which may lead to better monitoring measures for people who may be more at risk of developing these side effects. This review investigates the known roles and functions of adamalysins in disease, including what is currently known of their involvement in COVID-19, and how these functions might be involved.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Zhijian Cao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China,Co-corresponding author
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Corresponding author at: Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
11
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
12
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|