1
|
Gou R, Liu Y, Gou L, Mi S, Li X, Yang Y, Cheng X, Zhang Y. Transient Receptor Potential Channels in Sensory Mechanisms of the Lower Urinary Tract. Urol Int 2024; 108:464-476. [PMID: 38657590 DOI: 10.1159/000538855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.
Collapse
Affiliation(s)
- Ruiqiang Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,
| | - Yuanyuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shengyan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaonan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaorong Cheng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yibao Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
3
|
Sidwell AB, McClintock C, Beča KI, Campbell SE, Girard BM, Vizzard MA. Repeated variate stress increased voiding frequency and altered TrpV1 and TrpV4 transcript expression in lower urinary tract (LUT) pathways in female mice. FRONTIERS IN UROLOGY 2023; 2:1086179. [PMID: 37692906 PMCID: PMC10492642 DOI: 10.3389/fruro.2022.1086179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Psychological stress is associated with urinary bladder dysfunction (e.g., increased voiding frequency, urgency and pelvic pain); however, the mechanisms underlying the effects of stress on urinary bladder function are unknown. Transient receptor potential (TRP) channels (vanilloid family) may be potential targets for intervention due to their distribution in the LUT and role in pain. Here, we examine a model of repeated variate stress (RVS) of 2 week (wk) or 4 wk duration in female mice and its effects on bladder function, anxiety-like behavior, and TRPV transcript expression in urinary bladder and lumbosacral spinal cord and associated dorsal root ganglia (DRG). Using continuous infusion, open-outlet cystometry in conscious mice, RVS significantly (p ≤ 0.05) decreased infused volume and intermicturition interval. Bladder pressures (threshold, average, minimum, and maximum pressures) were unchanged with RVS. Quantitative PCR demonstrated significant (p ≤ 0.05) changes in TrpV1 and TrpV4 mRNA expression between control and RVS cohorts in the urothelium, lumbosacral spinal cord, and DRG. Future directions will examine the contribution of TRP channels on bladder function, somatic sensation and anxiety-like behavior following RVS.
Collapse
Affiliation(s)
- Amanda B. Sidwell
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Celia McClintock
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Katharine I. Beča
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
4
|
Yoshizumi M, Tazawa N, Watanabe C, Mizoguchi H. TRPV4 activation prevents lipopolysaccharide-induced painful bladder hypersensitivity in rats by regulating immune pathways. Front Immunol 2022; 13:1080302. [PMID: 36618411 PMCID: PMC9812943 DOI: 10.3389/fimmu.2022.1080302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation in the urinary bladder is a potential risk factor for bladder dysfunction, including interstitial cystitis/bladder pain syndrome (IC/BPS). Although several studies have reported that activation of transient receptor potential vanilloid 4 (TRPV4) contributes to bladder pain and overactive bladder with a cardinal symptom of acute or chronic cystitis, others have reported its involvement in the protective response mediated by lipopolysaccharides (LPS) to secrete anti-inflammatory/pro-resolution cytokines. Therefore, we investigated the potential benefit of an intravesical TRPV4 agonist for painful bladder hypersensitivity in a rat model of LPS-induced cystitis and determined whether its effects modulate the LPS signal for inflammatory reaction, cytokine release, and macrophage phenotype change. Previously, we showed that repeated intravesical instillations of LPS induce long-lasting bladder inflammation, pain, and overactivity in rats. In the present study, concurrent instillation of the selective TRPV4 agonist GSK1016790A (GSK) with LPS into the rat bladder improved LPS-induced bladder inflammation and reduced the number of mast cells. Furthermore, co-instillation of GSK prevented an increase in bladder pain-related behavior and voiding frequency caused by LPS. Cytokine profiling showed that LPS-stimulated inflammatory events, such as the production and secretion of pro-inflammatory cytokines (CXCL1, CXCL5, CXCL9, CXCL10, CCL3, CCL5, CCL20, and CX3CL1), are suppressed by GSK. Furthermore, TRPV4 activation switched LPS-stimulated pro-inflammatory M1-type macrophages to anti-inflammatory M2-type macrophages. These results suggest that TRPV4 activation in the bladder negatively regulates the pro-inflammatory response induced by LPS and prevents bladder hypersensitivity. These TRPV4 functions may be promising therapeutic targets for refractory IC/BPS.
Collapse
|
5
|
Kuronuma K, Otsuka M, Wakabayashi M, Yoshioka T, Kobayashi T, Kameda M, Morioka Y, Chiba H, Takahashi H. Role of transient receptor potential vanilloid 4 in therapeutic anti-fibrotic effects of pirfenidone. Am J Physiol Lung Cell Mol Physiol 2022; 323:L193-L205. [PMID: 35787697 DOI: 10.1152/ajplung.00565.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal lung disorder characterized by aberrant extracellular matrix deposition in the interstitium. Pirfenidone is an anti-fibrotic agent used to treat patients with IPF. Pirfenidone shows a pleiotropic mode of action, but its underlying anti-fibrotic mechanism is unclear. Transient receptor potential vanilloid 4 (TRPV4), which is a mechanosensitive calcium channel, was recently shown to be related to pulmonary fibrosis. To clarify the anti-fibrotic mechanisms of pirfenidone, we investigated whether TRPV4 blockade has a pharmacological effect in a murine model of pulmonary fibrosis and whether pirfenidone contributes to suppression of TRPV4. Our synthetic TRPV4 antagonist and pirfenidone treatment attenuated lung injury in the bleomycin mouse model. TRPV4-mediated increases in intracellular calcium were inhibited by pirfenidone. Additionally, TRPV4-stimulated interleukin-8 release from cells was reduced and a delay in cell migration was abolished by pirfenidone. Furthermore, pirfenidone decreased TRPV4 endogenous ligands in bleomycin-administered mouse lungs and their production by microsomes of human lungs. We found TRPV4 expression in the bronchiolar and alveolar epithelium and activated fibroblasts of the lungs in patients with IPF. Finally, we showed that changes in forced vital capacity of patients with IPF treated with pirfenidone were significantly correlated with metabolite levels of TRPV4 endogenous ligands in bronchoalveolar lavage fluid. These results suggest that the anti-fibrotic action of pirfenidone is partly mediated by TRPV4 and that TRPV4 endogenous ligands in bronchoalveolar lavage fluid may be biomarkers for distinguishing responders to pirfenidone.
Collapse
Affiliation(s)
- Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Masato Wakabayashi
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Takeshi Yoshioka
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masami Kameda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhide Morioka
- Drug Discovery and Disease Research Laboratory, Shionogi Co., Ltd., Osaka, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Hughes FM, Allkanjari A, Odom MR, Jin H, Purves JT. Specialized pro-resolution mediators in the bladder: Receptor expression and recovery of bladder function from cystitis. Exp Biol Med (Maywood) 2022; 247:700-711. [PMID: 35044873 PMCID: PMC9039492 DOI: 10.1177/15353702211067465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a central process in most benign bladder disorders, and its control is a delicate balance between initiating factors and resolving factors. While recent discoveries have shown a central role for the NLRP3 inflammasome in initiation, the resolving pathways remain unexplored. Resolution is controlled by specialized pro-resolution mediators (SPMs) functioning through seven receptors (six in rodents). Here we demonstrate expression of all seven in humans (six in mice) through immunocytochemistry. Expression was universal in urothelia with most also expressed in smooth muscle. We next explored the therapeutic potential of three SPMs; Resolvin E1 (RvE1), Maresin 1 (MaR1), and Protectin D1 (PD1). SPMs promote epithelial wound/barrier repair and RvE1 triggered dose-dependent wound closure in urothelia in vitro (scratch assay) (EC90 = 12.5 nM). MaR1 and PD1 were equally effective at this concentration. In vivo analyses employed a cyclophosphamide (CP) model of bladder inflammation (Day 0-CP [150 mg/kg], Day 1 to 3 SPM [25 µg/kg/day], Day 4 - analysis). All three SPMs reduced bladder inflammation (Evans blue) and bladder weights to control levels. Effects of RvE1 were also examined by urodynamics. CP decreased void volume, increased frequency and decreased bladder capacity while RvE1 restored values to control levels. Finally, SPMs reduce fibrosis and RvE1 reduced urothelial expression of TGF-β and collagen I to control values. Together these results expand the known SPMs active in the bladder tissue and provide promising therapeutic targets for controlling inflammation in a wide variety of inflammation-associated benign bladder diseases.
Collapse
|
7
|
Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol 2022; 915:174692. [PMID: 34890545 DOI: 10.1016/j.ejphar.2021.174692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) ion channels play critical roles in physiological and pathological conditions. Increasing evidence has unveiled the contribution of TRP vanilloid (TRPV) family in the development of asthma. The TRPV family is a group (TRPV1-TRPV6) of polymodal channels capable of sensing thermal, acidic, mechanical stress, and osmotic stimuli. TRPVs can be activated by endogenous ligands including, arachidonic acid derivatives or endocannabinoids. While TRPV1-TRPV4 are non-selective cation channels showing a predominance for Ca2+ over Na + influx, TRPV5 and TRPV6 are only Ca2+ permeable selective channels. Asthma is a chronic inflammatory bronchopulmonary disorder involving airway hyperresponsiveness (AHR) and airway remodeling. Patients suffering from allergic asthma display an inflammatory pattern driven by cytokines produced in type-2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). Ion channels are essential regulators in airway smooth muscle (ASM) and immune cells physiology. In this review, we summarize the contribution of TRPV1, TRPV2, and TRPV4 to the pathogenesis of asthma. TRPV1 is associated with hypersensitivity to environmental pollutants and chronic cough, inflammation, AHR, and remodeling. TRPV2 is increased in peripheral lymphocytes of asthmatic patients. TRPV4 contributes to ASM cells proliferation, and its blockade leads to a reduced eosinophilia, neutrophilia, as well as an abolished AHR. In conclusion, TRPV2 may represent a novel biomarker for asthma in children; meanwhile, TRPV1 and TRPV4 seem to be essential contributors to the development and exacerbations of asthma. Moreover, these channels may serve as novel therapeutic targets for this ailment.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
8
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
9
|
SUSAI N, KUROITA T, KURONUMA K, YOSHIOKA T. Analysis of the gut microbiome to validate a mouse model of pellagra. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:73-82. [PMID: 35433165 PMCID: PMC8970653 DOI: 10.12938/bmfh.2021-059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Natsumi SUSAI
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiro KUROITA
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Koji KURONUMA
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Takeshi YOSHIOKA
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
10
|
A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2021; 9:biomedicines9080865. [PMID: 34440069 PMCID: PMC8389661 DOI: 10.3390/biomedicines9080865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.
Collapse
|