1
|
Zhang B, Li J, Jia J, Yang Y, Wu X, Hong X, Chen Z, Xiao Y. Promoter Engineering and Two-Phase Whole-Cell Catalysis Improve the Biosynthesis of Naringenin in E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11157-11167. [PMID: 40329778 DOI: 10.1021/acs.jafc.5c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Naringenin and its analogues are important flavonoids with various health benefits such as anti-inflammatory, antibacterial, and anticancer activities. Biosynthesis of naringenin using microbial cell factories is often hampered by the pool of intracellular malonyl-CoA and its inherent toxicity to host cells. Here, we investigated promoter engineering and two-phase whole-cell catalysis for improving the production of naringenin. A total of 357 T7-derived promoters were obtained and utilized to fine-tune acetyl-CoA carboxylase expression for enhanced intracellular malonyl-CoA in Escherichia coli, resulting in increased bioproduction by 62.0% compared to the original strain. Furthermore, through two-phase whole-cell catalysis using selected isopropyl myristate, the naringenin titer increased to 3001.7 mg L-1. Additionally, naringenin and its analogue homoeriodictyol showed significant anticancer activity against ID8, MC38, HepG2, B16-F10, and MDA-MB-231 cancer cells. This study provides an efficient strategy for naringenin biosynthesis and implies the potential of naringenin analogues for further drug development.
Collapse
Affiliation(s)
- Baohui Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiawei Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jingqi Jia
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yifan Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaofeng Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xulin Hong
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zongchao Chen
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Yin H, Li Y, Feng Y, Tian L, Li Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients 2024; 16:4237. [PMID: 39683630 DOI: 10.3390/nu16234237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Eriodictyol is a flavanone compound commonly found in several edible plants. Ultrasound-assisted extraction and high-performance liquid chromatography (HPLC) are commonly used methods for the separation and analysis of eriodictyol. Many studies show that some micro-organisms can produce eriodictyol as a host. What is more, eriodictyol has a wide range of health benefits, including skincare, neuroprotective, hypoglycemic, anti-inflammatory, and antioxidant activities. In addition, the therapeutic properties of eriodictyol are cardioprotective, hepatoprotective, anticancer, with protective effects on the lungs and kidneys, and so on. This review examines the extraction, biosynthesis, and health and therapeutic properties of the natural compound eriodictyol and its value in medicine and food.
Collapse
Affiliation(s)
- Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Xie Y, Su Y, Wang Y, Zhang D, Yu Q, Yan C. Structural clarification of mannoglucan GSBP-2 from Ganoderma sinense and its effects on triple-negative breast cancer migration and invasion. Int J Biol Macromol 2024; 269:131903. [PMID: 38688342 DOI: 10.1016/j.ijbiomac.2024.131903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, β-d-Glcp-(1→, β-d-GlcpA-(1→, →3)-β-d-Glcp-(1→, →3)-β-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-β-d-Manp-(1→, and →3,6)-β-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.
Collapse
Affiliation(s)
- Yikun Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
6
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
10
|
Du D, Qin C, Sun M, Lv F, Li W, Liu S. The Potential Mechanism of Eriodictyol in Treating Alzheimer's Disease: A Study on Computer-assisted Investigational Strategies. Curr Pharm Des 2024; 30:2086-2107. [PMID: 38920073 DOI: 10.2174/0113816128304628240526071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND At present, drug development for treating Alzheimer's disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown. OBJECTIVE We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations. RESULTS A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations. CONCLUSION ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.
Collapse
Affiliation(s)
- Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
11
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
13
|
Niu P, Liu F, Lei F, Peng J, Wang Y, Zhao J, Gao Z, Gao Q, Gu J. Breviscapine regulates the proliferation, migration, invasion, and apoptosis of colorectal cancer cells via the PI3K/AKT pathway. Sci Rep 2023; 13:9674. [PMID: 37316553 DOI: 10.1038/s41598-023-33792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as one of the most common malignancies with a high death rate. It has been discovered that breviscapine can alter the progression and development of various cancers. Nevertheless, the function and mechanisms of breviscapine in CRC progression have not yet been described. The cell proliferation capacity of HCT116 and SW480 cells was assessed using the CCK-8 and EdU assays. Cell apoptosis was tested through flow cytometry, and cell migration and invasion were examined using the transwell assay. Moreover, protein expression was examined through a western blot. Tumor weight and volume were assessed using the nude mice in vivo assay, and the Ki-67 protein expression was verified through the IHC assay. This study discovered that an increased dose of breviscapine (0, 12.5, 25, 50, 100, 200, and 400 μM) gradually reduced cell proliferation and increased apoptosis in CRC. Additionally, breviscapine restricted the migration and invasion CRC cells. Moreover, it was revealed that breviscapine inactivated the PI3K/AKT pathway and inhibited CRC progression. Finally, an in vivo assay demonstrated that breviscapine restrained tumor growth in vivo. It affected the CRC cells' proliferation, migration, invasion, and apoptosis through the PI3K/AKT pathway. This discovery may offer new insights into CRC treatment.
Collapse
Affiliation(s)
- Pengfei Niu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Feng Liu
- Beijing Viewsolid Biotechnology Co., Ltd., Beijing, 100195, China
| | - Fuming Lei
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jisheng Peng
- Department of Traditional Chinese Medicine, Peking University Shougang Hospital, Beijing, 100144, China
| | - Yanzhao Wang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jun Zhao
- Department of Traditional Chinese Medicine, Peking University Shougang Hospital, Beijing, 100144, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Qingkun Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, No. 9, Jinyuanzhuang Road, The Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
14
|
An Eight-mRNA Prognostic Model to Predict Survival in Hepatic Cellular Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023. [DOI: 10.1155/2023/7278231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Transcriptional dysregulation plays a critical role in the onset and development of malignant tumors. Employing gene dysregulation to forecast the change of tumors is valuable for cancer diagnosis. However, the prognostic prediction for HCC using combined gene models remains insufficient. Methods. The expression profiles of GSE103512 and TCGA-LIHC were downloaded. Gene Ontology (Go) was used to evaluate the overlapping differential genes (DEG) in TCGA and GSE103512. The core genes in the critical module most significantly related to HCC were obtained by WGCNA. Eight genes most significantly related to HCC and OS were identified by reweighted coexpression network analysis and Cox regression. Results. We selected eight genes, FZEB1, CDK1, RAD54L, COL1A2, ATP1B3, CASP8, USP39, and HOXB7. Moreover, we constructed an eight-gene model and forecasted the prognosis of HCC. ROC curve of the eight-mRNA prognostic model was screened out (
), suggesting that this model exhibited a good prediction performance. Survival analysis showed that the survival rate of patients in the high-risk group was significantly lower than that in the low-risk group. Conclusion. The eight-mRNAs model might forecast the OS of HCC patients and advance remedial decision-making.
Collapse
|
15
|
Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY. Blockade of c-Met-Mediated Signaling Pathways by E7050 Suppresses Growth and Promotes Apoptosis in Multidrug-Resistant Human Uterine Sarcoma Cells. Int J Mol Sci 2022; 23:ijms232314884. [PMID: 36499211 PMCID: PMC9740914 DOI: 10.3390/ijms232314884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Wei Lan
- Division of Pulmonary Biology, The Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, OH 45229, USA
| | - Song-Shu Lin
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kong-Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung City 20401, Taiwan
- Correspondence: ; Tel.: +886-2211-8393
| |
Collapse
|
16
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
17
|
Thuan NH, Tatipamula VB, Viet TT, Tien NQD, Loc NH. Bioproduction of eriodictyol by Escherichia coli engineered co-culture. World J Microbiol Biotechnol 2022; 38:112. [DOI: 10.1007/s11274-022-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
18
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
19
|
Liu W, Yu Q, Wang F, Li Y, Zhang G, Tao S. Taraxasterol attenuates melanoma progression via inactivation of reactive oxygen species-mediated PI3K/Akt signaling pathway. Hum Exp Toxicol 2022; 41:9603271211069034. [PMID: 35128947 DOI: 10.1177/09603271211069034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Taraxasterol (TX), a pentacyclic triterpene, is one of the main active constituents isolated from Taraxacum officinale. A growing number of studies have reported that TX exhibits a wide range of biological activities such as anti-oxidative, anti-inflammatory, and neuro-protective effects. Recently, TX has been demonstrated to be a potential drug candidate for treatment of some types of cancers. However, the specific role of TX in melanoma remains unclear.Purpose: In this study, we aimed at exploration of the effect of TX on melanoma cell viability, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) as well as the underlying mechanisms.Research design: A375 and SK-MEL-28 cells were treated with various concentrations of TX for different times. Cell viability was measured using CCK-8 assay. Cell apoptosis was determined by flow cytometry. Transwell assays were performed to measure cell migration and invasion. The expression of E-cadherin, α-catenin, N-cadherin, vimentin, p-PI3K, PI3K, p-Akt and Akt was detected using western blot.Results: The study showed that TX induced A375 and SK-MEL-28 cell apoptosis. Furthermore, exposure to TX inhibited A375 and SK-MEL-28 cell migration and invasion. Besides, the EMT process was reversed in A375 and SK-MEL-28 cells after TX treatment. We also observed that TX reduced the protein expression of p-PI3K and p-Akt; thus, inhibiting activity of the PI3K/Akt pathway in A375 and SK-MEL-28 cells. In addition, TX treatment increased the levels of reactive oxygen species (ROS) in A375 and SK-MEL-28 cells, and treatment with the ROS scavenger NAC significantly rescued TX-induced down-regulation of p-PI3K and p-Akt in A375 and SK-MEL-28 cells.Conclusions: In conclusion, our study demonstrated that TX induced ROS accumulation followed by inactivation of the PI3K/Akt pathway and subsequently attenuated melanoma progression, suggesting that TX may be a potential candidate for treatment of melanoma.
Collapse
Affiliation(s)
- Wenfang Liu
- Surgery Teaching and Research Office, 602852Cangzhou Medical College, Cangzhou, China
| | - Qianying Yu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Surgery Teaching and Research Office, 602852Cangzhou Medical College, Cangzhou, China
| | - Yunxia Li
- Department of Oncology, 730060No. 733 Fulixi Road, Xigu District, Lanzhou, China
| | - Guohua Zhang
- Preventive Medicine, College of Public Health, 381940Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sirui Tao
- Department of Dermatology, Gansu Gem Flower Hospital, Lanzhou, China
| |
Collapse
|
20
|
Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, Ranjbar A, Hashemi M, Ertas YN, Hushmandi K, Mirzaei S, Ashrafizadeh M, Zarrabi A, Samarghandian S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2022; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefeh Mehrabi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Ehsan Ranjbar
- Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
Three dimensions of autophagy in regulating tumor growth: cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166265. [PMID: 34487813 DOI: 10.1016/j.bbadis.2021.166265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is an intracellular lysosomal degradation process involved in multiple facets of cancer biology. Various dimensions of autophagy are associated with tumor growth and cancer progression, and here we focus on the dimensions involved in regulation of cell survival/cell death, cell proliferation and tumor dormancy. The first dimension of autophagy supports cell survival under stress within tumors and under certain contexts drives cell death, impacting tumor growth. The second dimension of autophagy promotes proliferation through directly regulating cell cycle or indirectly maintaining metabolism, increasing tumor growth. The third dimension of autophagy facilitates tumor cell dormancy, contributing to cancer treatment resistance and cancer recurrence. The intricate relationship between these three dimensions of autophagy influences the extent of tumor growth and cancer progression. In this review, we summarize the roles of the three dimensions of autophagy in tumor growth and cancer progression, and discuss unanswered questions in these fields.
Collapse
|
22
|
Wen S, Hu M, Xiong Y. Effect of Eriodictyol on Retinoblastoma via the PI3K/Akt Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6091585. [PMID: 34804455 PMCID: PMC8601792 DOI: 10.1155/2021/6091585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
Retinoblastoma (RB) is one of the most common intraocular malignancies in children, which causes vision loss and even threatens life. Eriodictyol is a natural flavonoid with strong anticancer activity. Some studies have shown that eriodictyol exerts anticancer effects in glioma, colon cancer, and lung cancer; however, no studies have reported the anticancer effects of eriodictyol on RB. Therefore, the aim of this study was to investigate the anticancer activity of eriodictyol against the RB Y79 cell line and its potential mechanism of action. Interestingly, we found that eriodictyol inhibited the proliferation, migration, and invasion of Y79 cells in a dose-dependent manner and decreased the expression of MMP-2 and MMP-9 proteins in the cells. In addition, eriodictyol-induced apoptosis in Y79 cells was assessed by flow cytometry and immunoblotting. Here, our study revealed that eriodictyol dose dependently inhibited the activation of the PI3K/Akt signaling pathway. Notably, the effect of eriodictyol on RB apoptosis was reversed by a PI3K agonist 740 Y-P. In conclusion, our study shows that eriodictyol effectively inhibits proliferation, migration, and invasion and induces apoptosis in RB cell lines, which may be the result of blocking the PI3K/Akt signaling pathway. Thus, eriodictyol may provide a new theoretical basis for exploring targeted antitumor natural therapies.
Collapse
Affiliation(s)
- Shu Wen
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| | - Meng Hu
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| |
Collapse
|
23
|
Nie J, Feng Y, Wang H, Lian XY, Li YF. Long Non-Coding RNA SNHG6 Supports Glioma Progression Through Upregulation of Notch1, Sox2, and EMT. Front Cell Dev Biol 2021; 9:707906. [PMID: 34485294 PMCID: PMC8414414 DOI: 10.3389/fcell.2021.707906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Gliomas, particularly the advanced grade glioblastomas, have poor 5-year survival rates and worse outcomes. lncRNAs and EMT have been extensively studied in gliomas but the disease progression remains poorly understood. SNHG6 has been shown to affect glioma cell proliferation but its effect on EMT of glioma cells along with its effect on disease progression is not known. We screened four glioma cell lines; H4, A172, U87MG, and SW088 and grouped them based on high vs. low SNHG6 expression. Transfections with SNHG6 specific siRNA resulted in induction of apoptosis of high SNHG6 expressing A172 and U87MG cells. This was accompanied by inhibition of EMT and downregulation of EMT-modulating factor Notch1, β-catenin activity and the cancer stem cell marker Sox2. The regulation was not found to be reciprocal as silencing of Notch1 and Sox2 failed to affect SNHG6 levels. The levels of SNHG6 and Notch1 were also found elevated in Grade IV glioma patients (n = 4) relative to Grade II glioma patients (n = 5). These results identify SNHG6 and Notch1 as valid targets for glioma therapy.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yao Feng
- Department of Acupuncture, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - He Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiao-Yu Lian
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ying-Fu Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|