1
|
Laraib I, Qasim S, Uttra AM, Al-Joufi FA. Anti-Inflammatory, Antihyperalgesic, and Gastric Safety Profiling of Ocimene: Attenuation of Nonsteroidal Anti-Inflammatory Drug-Induced Gastric Ulcers by Modulating Toll-like Receptor 4 and Pyroptosis Pathways. ACS Pharmacol Transl Sci 2025; 8:748-761. [PMID: 40109750 PMCID: PMC11915039 DOI: 10.1021/acsptsci.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
Monocyclic monoterpenoid ocimene (OC) was evaluated as a potential inhibitor of TLR4/NLRP3/GSDMD-driven pyroptosis, implicated in conditions such as chronic pain, inflammation, and gastric ulcers. This study investigated OC's protective effects against indomethacin (IND)-induced gastric ulcers, aiming to identify an analgesic and anti-inflammatory agent with enhanced gastric safety. OC's analgesic efficacy was demonstrated by reducing formalin-evoked paw licking, writhing provoked by acetic acid-induced and tail immersion reaction latencies in animal models. Anti-inflammatory effects were confirmed through reduced paw edema (formalin and carrageenan), along with in vitro suppression of protein denaturation and membrane stabilization. qRT-PCR showed that OC significantly (p < 0.001) downregulated TLR4, MyD88, NFκB, NLRP3, and inflammatory mediators (IL-18, IL-1β, caspase-1, ASC, GSDMD, COX-1, COX-2) with upregulation of anti-inflammatory cytokines IL-4 and IL-10. ELISA results indicated a reduction in the oxidative stress marker MDA and inflammatory mediators PGE-2 and 5-LOX, with increased antioxidant markers GSH, CAT, and SOD. Macroscopic and histological analysis showed that OC provided gastric protection by reducing the ulcer index (UI) and improving ulcer scores, with effects comparable to omeprazole. In summary, OC shows potential as a safe antinociceptive and anti-inflammatory agent, effectively reducing gastric ulcer risk by mitigating pyroptosis and inflammation, critical for treating chronic inflammatory conditions with hyperalgesia.
Collapse
Affiliation(s)
- Iqra Laraib
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Sumera Qasim
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| |
Collapse
|
2
|
Fayazzadeh S, Fakhri S, Abbaszadeh F, Farzaei MH. Role of l -arginine/nitric oxide/cyclic GMP/K ATP channel signaling pathway and opioid receptors in the antinociceptive effect of rutin in mice. Behav Pharmacol 2024; 35:399-407. [PMID: 39230435 DOI: 10.1097/fbp.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| |
Collapse
|
3
|
Oliveira AS, Biano LS, Palmeira DN, de Almeida DR, Lopes-Ferreira M, Kohlhoff M, Sousa JAC, Brandão GC, Silva AMDOE, Grespan R, Camargo EA. Antinociceptive effect of Nephelium lappaceum L. fruit peel and the participation of nitric oxide, opioid receptors, and ATP-sensitive potassium channels. Front Pharmacol 2023; 14:1287580. [PMID: 38026962 PMCID: PMC10644719 DOI: 10.3389/fphar.2023.1287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.
Collapse
Affiliation(s)
- Alan Santos Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Laiza Santos Biano
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Mônica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), São Paulo, Brazil
| | - Markus Kohlhoff
- Oswaldo Cruz Foundation, René Rachou Institute, Belo Horizonte, Brazil
| | | | | | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Renata Grespan
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Enilton Aparecido Camargo
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
4
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
5
|
Santos WBR, Pina LTS, de Oliveira MA, Santos LABO, Batista MVA, Trindade GGG, Duarte MC, Almeida JRGS, Quintans-Júnior LJ, Quintans JSS, Serafini MR, Coutinho HDM, Kowalska G, Baj T, Kowalski R, Guimarães AG. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules 2023; 28:molecules28114465. [PMID: 37298941 DOI: 10.3390/molecules28114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pain is one of the most prevalent and difficult to manage symptoms in cancer patients, and conventional drugs present a range of adverse reactions. The development of β-cyclodextrins (β-CD) complexes has been used to avoid physicochemical and pharmacological limitations due to the lipophilicity of compounds such as p-Cymene (PC), a monoterpene with antinociceptive effects. Our aim was to obtain, characterize, and measure the effect of the complex of p-cymene and β-cyclodextrin (PC/β-CD) in a cancer pain model. Initially, molecular docking was performed to predict the viability of complex formation. Afterward, PC/β-CD was obtained by slurry complexation, characterized by HPLC and NMR. Finally, PC/β-CD was tested in a Sarcoma 180 (S180)-induced pain model. Molecular docking indicated that the occurrence of interaction between PC and β-CD is favorable. PC/β-CD showed complexation efficiency of 82.61%, and NMR demonstrated PC complexation in the β-CD cavity. In the S180 cancer pain model, PC/β-CD significantly reduced the mechanical hyperalgesia, spontaneous nociception, and nociception induced by non-noxious palpation at the doses tested (p < 0.05) when compared to vehicle differently from free PC (p > 0.05). Therefore, the complexation of PC in β-CD was shown to improve the pharmacological effect of the drug as well as reducing the required dose.
Collapse
Affiliation(s)
- Wagner B R Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lícia T S Pina
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marlange A de Oliveira
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lucas A B O Santos
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcus V A Batista
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Gabriela G G Trindade
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcelo C Duarte
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Jackson R G S Almeida
- Department of Pharmacy, Federal University of Vale do São Francisco, Juazeiro 48902-300, BA, Brazil
| | | | - Jullyana S S Quintans
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Mairim R Serafini
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry (DBQ), Regional University of Cariri (URCA), Pimenta, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Adriana G Guimarães
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| |
Collapse
|
6
|
Gomes AKC, Alves Soares M, Miranda ALP, Tributino JLM, Goetze Fiorot R, Kuster RM, Gomes ACC, Simas NK. Flavonoids and fractions from Saccharum officinarum L. juice: antinociceptive agents and molecular docking evaluations with µ-opioid receptor. Nat Prod Res 2023; 37:592-597. [PMID: 35422173 DOI: 10.1080/14786419.2022.2063854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opioid receptors mediate antinociceptive effects. Methanolic fractions from sugarcane varieties (MFSCf) were evaluated in classic nociception models. Interactions between bioactive compounds and the µ-opioid receptor (µOR) through docking analysis were also studied. Five methanolic fractions of sugarcane juice were obtained and analysed by LC-ESI-MS/MS. The fractions and standards of phenolic compounds were evaluated in a nociception model using the formalin test. All MFSCfs exhibited antinociceptive activity in the first phase of the formalin test. Docking analyses corroborates with the in vivo test results, suggesting that the phenolic substances are able to activate µOR. These results, for the first time, implicate phenolic constituents from sugarcane juice and other phenolic compounds in the activation of µOR. The antinociceptive activity of fractions from sugarcane juice suggests the potential pharmacological use of this species, widely cultivated in Brazil.
Collapse
Affiliation(s)
- Anne Katherine C Gomes
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Alves Soares
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Luísa P Miranda
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rodolfo Goetze Fiorot
- Departmento de Química Orgânica, Instituto de Química, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Anne Caroline C Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Naomi Kato Simas
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
3D-QSAR, ADME-Tox In Silico Prediction and Molecular Docking Studies for Modeling the Analgesic Activity against Neuropathic Pain of Novel NR2B-Selective NMDA Receptor Antagonists. Processes (Basel) 2022. [DOI: 10.3390/pr10081462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new class of selective antagonists of the N-Methyl-D-Aspartate (NMDA) receptor subunit 2B have been developed using molecular modeling techniques. The three-dimensional quantitative structure–activity relationship (3D-QSAR) study, based on comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models, indicate that steric, electrostatic and hydrogen bond acceptor fields have a key function in the analgesic activity against neuropathic pain. The predictive accuracy of the developed CoMFA model (Q2 = 0.540, R2 = 0.980, R2 pred = 0.613) and the best CoMSIA model (Q2 = 0.665, R2 = 0.916, R2 pred = 0.701) has been successfully examined through external and internal validation. Based on ADMET in silico properties, L1, L2 and L3 ligands are non-toxic inhibitors of 1A2, 2C19 and 2C9 cytochromes, predicted to passively cross the blood–brain barrier (BBB) and have the highest probability to penetrate the central nervous system (CNS). Molecular docking results indicate that the active ligands (L1, L2 and L3) interact specifically with Phe176, Glu235, Glu236, Gln110, Asp136 and Glu178 amino acids of the transport protein encoded as 3QEL. Therefore, they could be used as analgesic drugs for the treatment of neuropathic pain.
Collapse
|